Currently job artifacts in CI/CD pipelines on LRZ GitLab never expire. Starting from Wed 26.1.2022 the default expiration time will be 30 days (GitLab default). Currently existing artifacts in already completed jobs will not be affected by the change. The latest artifacts for all jobs in the latest successful pipelines will be kept. More information: https://gitlab.lrz.de/help/user/admin_area/settings/continuous_integration.html#default-artifacts-expiration

ivustcraycaster.cpp 6.61 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// ================================================================================================
// 
// This file is part of the CAMPVis Software Framework.
// 
// If not explicitly stated otherwise: Copyright (C) 2012-2014, all rights reserved,
//      Christian Schulte zu Berge <christian.szb@in.tum.de>
//      Chair for Computer Aided Medical Procedures
//      Technische Universitaet Muenchen
//      Boltzmannstr. 3, 85748 Garching b. Muenchen, Germany
// 
// For a full list of authors and contributors, please refer to the file "AUTHORS.txt".
// 
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file 
// except in compliance with the License. You may obtain a copy of the License at
// 
// http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software distributed under the 
// License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, 
// either express or implied. See the License for the specific language governing permissions 
// and limitations under the License.
// 
// ================================================================================================

#include "ivustcraycaster.h"

#include "tgt/textureunit.h"

#include "core/tools/quadrenderer.h"
#include "core/datastructures/lightsourcedata.h"
#include "core/datastructures/renderdata.h"
#include "core/pipeline/processordecoratorgradient.h"

namespace campvis {
    const std::string IvusTcRaycaster::loggerCat_ = "CAMPVis.modules.vis.IvusTcRaycaster";

    IvusTcRaycaster::IvusTcRaycaster(IVec2Property* viewportSizeProp)
        : RaycastingProcessor(viewportSizeProp, "modules/ivus_tc/glsl/ivustcraycaster.frag", true, "400")
        , p_cmImage("CmImage", "Confidence Map Image", "image.cm", DataNameProperty::READ)
        , p_tcImage("TcImage", "Tissue Classification Image", "image.tc", DataNameProperty::READ)
        , p_plaqueImage("PlaqueImage", "Plaque Mask Image", "image.plaque", DataNameProperty::READ)
        , p_enableShading("EnableShading", "Enable Shading", true)
        , p_lightId("LightId", "Input Light Source", "lightsource", DataNameProperty::READ)
        , p_predicateHistogram("PredicateHistogram", "Voxel Predicate Selection")
    {
        addDecorator(new ProcessorDecoratorGradient());

        addProperty(p_cmImage);
        addProperty(p_tcImage);
        addProperty(p_plaqueImage);

        addProperty(p_enableShading, INVALID_RESULT | INVALID_PROPERTIES | INVALID_SHADER);
        addProperty(p_lightId);
        addProperty(p_predicateHistogram);

        decoratePropertyCollection(this);
    }

    IvusTcRaycaster::~IvusTcRaycaster() {
    }

    void IvusTcRaycaster::init() {
        p_predicateHistogram.getPredicateHistogram()->setPredicateFunctionArgumentString("in float ivus, in float cm, in vec4 tc, in float plaque");

        RaycastingProcessor::init();
        p_predicateHistogram.s_headerChanged.connect(this, &IvusTcRaycaster::onHistogramHeaderChanged);
    }

    void IvusTcRaycaster::deinit() {
        p_predicateHistogram.s_headerChanged.disconnect(this);
        RaycastingProcessor::deinit();
    }

    void IvusTcRaycaster::processImpl(DataContainer& dataContainer, ImageRepresentationGL::ScopedRepresentation& image) {
        ImageRepresentationGL::ScopedRepresentation cm(dataContainer, p_cmImage.getValue());
        ImageRepresentationGL::ScopedRepresentation tc(dataContainer, p_tcImage.getValue());
        ImageRepresentationGL::ScopedRepresentation plaque(dataContainer, p_plaqueImage.getValue());

        if (cm && tc && plaque) {
            ScopedTypedData<LightSourceData> light(dataContainer, p_lightId.getValue());

            if (p_enableShading.getValue() == false || light != nullptr) {
                const tgt::Texture* tex = image->getTexture();
                if (tex->getFilter() != tgt::Texture::MIPMAP) {
                    const_cast<tgt::Texture*>(tex)->setFilter(tgt::Texture::MIPMAP);
                    LGL_ERROR;
                    glGenerateMipmap(GL_TEXTURE_3D);
                    LGL_ERROR;
                    glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
                    LGL_ERROR;
                    glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
                    LGL_ERROR;
                }

                tgt::TextureUnit cmUnit, tcUnit, plaqueUnit;
                cm->bind(_shader, cmUnit, "_cm", "_cmParams");
                tc->bind(_shader, tcUnit, "_tc", "_tcParams");
                plaque->bind(_shader, plaqueUnit, "_plaque", "_plaqueParams");
                
                if (p_enableShading.getValue() && light != nullptr) {
                    light->bind(_shader, "_lightSource");
                }

                _shader->setIgnoreUniformLocationError(true);
                p_predicateHistogram.getPredicateHistogram()->setupRenderShader(_shader);
                _shader->setIgnoreUniformLocationError(false);
                LGL_ERROR;

                FramebufferActivationGuard fag(this);
                createAndAttachTexture(GL_RGBA8);
                createAndAttachTexture(GL_RGBA32F);
                createAndAttachTexture(GL_RGBA32F);
                createAndAttachDepthTexture();

                static const GLenum buffers[] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 , GL_COLOR_ATTACHMENT2 };
                glDrawBuffers(3, buffers);

                glEnable(GL_DEPTH_TEST);
                glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
                QuadRdr.renderQuad();

                // restore state
                glDrawBuffers(1, buffers);
                glDisable(GL_DEPTH_TEST);
                LGL_ERROR;

                dataContainer.addData(p_targetImageID.getValue(), new RenderData(_fbo));
            }
            else {
                LDEBUG("Could not load light source from DataContainer.");
            }
        }
        else {
134
            LDEBUG("Could not load Voxel Predicate Mask Image.");
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        }
    }

    std::string IvusTcRaycaster::generateHeader() const {
        std::string toReturn = RaycastingProcessor::generateHeader();
        if (p_enableShading.getValue())
            toReturn += "#define ENABLE_SHADING\n";

        toReturn += p_predicateHistogram.getPredicateHistogram()->getGlslHeader();
        return toReturn;
    }

    void IvusTcRaycaster::onHistogramHeaderChanged() {
        invalidate(INVALID_SHADER);
    }

    void IvusTcRaycaster::updateProperties(DataContainer& dataContainer) {
        p_lightId.setVisible(p_enableShading.getValue());
        RaycastingProcessor::updateProperties(dataContainer);
        validate(INVALID_PROPERTIES);
    }

}