genericimagerepresentationlocal.h 21.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// ================================================================================================
// 
// This file is part of the CAMPVis Software Framework.
// 
// If not explicitly stated otherwise: Copyright (C) 2012, all rights reserved,
//      Christian Schulte zu Berge <christian.szb@in.tum.de>
//      Chair for Computer Aided Medical Procedures
//      Technische Universität München
//      Boltzmannstr. 3, 85748 Garching b. München, Germany
// For a full list of authors and contributors, please refer to the file "AUTHORS.txt".
// 
// The licensing of this softare is not yet resolved. Until then, redistribution in source or
// binary forms outside the CAMP chair is not permitted, unless explicitly stated in legal form.
// However, the names of the original authors and the above copyright notice must retain in its
// original state in any case.
// 
// Legal disclaimer provided by the BSD license:
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 
// AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
// 
// ================================================================================================

#ifndef GENERICIMAGEREPRESENTATIONLOCAL_H__
#define GENERICIMAGEREPRESENTATIONLOCAL_H__

#include "core/datastructures/imagerepresentationlocal.h"
#include "core/tools/typetraits.h"

#include <cstring>  // needed for memcpy

namespace campvis {

    /**
41
     * Templated version of ImageRepresentationLocal, storing image data in the local memory.
42
43
44
45
46
47
48
49
50
51
52
53
54
     *
     * \sa      TypeTraits
     * \tparam  BASETYPE    Base type of the image data (type of a single channel of an image element)
     * \tparam  NUMCHANNELS Number of channels of the image data.
     */
    template<typename BASETYPE, size_t NUMCHANNELS>
    class GenericImageRepresentationLocal : public ImageRepresentationLocal {
    public:
        /// Type of one single image element
        typedef typename TypeTraits<BASETYPE, NUMCHANNELS>::ElementType ElementType;
        /// Type of this template instantiation
        typedef GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS> ThisType;

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        /**
         * Template specialization of the ScopedRepresentation defined in GenericAbstractImageRepresentation<T>
         * since some compiler get confused by the nested templates.
         * \note    This is a simple copy and paste from GenericAbstractImageRepresentation<T> with
         *          explicitly named template parameter.
         */
        struct ScopedRepresentation {
            /**
             * Creates a new DataHandle to the data item with the key \a name in \a dc, that behaves like a const GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>*.
             * \param   dc      DataContainer to grab data from
             * \param   name    Key of the DataHandle to search for
             */
            ScopedRepresentation(const DataContainer& dc, const std::string& name)
                : dh(dc.getData(name))
                , data(0)
                , representation(0) 
            {
                if (dh.getData() != 0) {
                    data = dynamic_cast<const ImageData*>(dh.getData());
                    if (data != 0) {
                        representation = data->getRepresentation< GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS> >();
                    }
                }
            };

            /**
             * Implicit conversion operator to const GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>*.
             * \return  The image representation of the image in the DataHandle, may be 0 when no DataHandle was found,
             *           the data is of the wrong type, or no suitable representation was found.
             */
            operator const GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>*() {
                return representation;
            }

            /**
             * Implicit arrow operator to const GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>*.
             * \return  The image representation of the image in the DataHandle, may be 0 when no DataHandle was found,
             *           the data is of the wrong type, or no suitable representation was found.
             */
            const GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>* operator->() const {
                return representation;
            }

            /**
             * Gets the DataHandle.
             * \return dh
             */
            DataHandle getDataHandle() const {
                return dh;
            }

            /**
             * Returns the parent ImageData of this image representation.
             * \return data
             */
            const ImageData* getImageData() const {
                return data;
            }

        private:
            /// Not copy-constructable
            ScopedRepresentation(const ScopedRepresentation& rhs);
            /// Not assignable
            ScopedRepresentation& operator=(const ScopedRepresentation& rhs);

            DataHandle dh;                  ///< DataHandle
            const ImageData* data;          ///< strongly-typed pointer to data, may be 0
            const GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>* representation;        ///< strongly-typed pointer to the image representation, may be 0
        };

125
126
127
128
129
130
        /**
         * Creates a new strongly typed ImageData object storing the image in the local memory.
         * 
         * \param   parent  Image this representation represents, must not be 0.
         * \param   data    Pointer to the image data, must not be 0, GenericImageRepresentationLocal takes ownership of this pointer!
         */
131
        GenericImageRepresentationLocal(ImageData* parent, ElementType* data);
132
133
134
135
136
137
138

        /**
         * Destructor
         */
        virtual ~GenericImageRepresentationLocal();


139
140
141
142
143
144
145
146
147
        /**
         * Performs a conversion of \a source to an ImageRepresentationLocal if feasible.
         * Returns 0 if conversion was not successful or source representation type is not compatible.
         * \note    The caller has to take ownership of the returned pointer if not 0.
         * \param   source  Source image representation for conversion.
         * \return  A pointer to a local representation of \a source or 0 on failure. The caller has to take ownership.
         */
        static GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>* tryConvertFrom(const AbstractImageRepresentation* source);

148
        /// \see AbstractImageRepresentation::clone()
149
        virtual ThisType* clone(ImageData* newParent) const;
150
151
152
153
154
155
156
157

        /// \see AbstractImageRepresentation::getLocalMemoryFootprint()
        virtual size_t getLocalMemoryFootprint() const;

        /// \see AbstractImageRepresentation::getVideoMemoryFootprint()
        virtual size_t getVideoMemoryFootprint() const;

        /// \see AbstractImageRepresentation::getSubImage
158
        virtual ThisType* getSubImage(ImageData* parent, const tgt::svec3& llf, const tgt::svec3& urb) const;
159
160
161

        /**
         * Returns a WeaklyTypedPointer to the image data.
162
         * \note    The pointer is still owned by this ImageRepresentationLocal. If you want a copy, use clone().
163
164
165
166
         * \return  A WeaklyTypedPointer to the image data.
         */
        virtual const WeaklyTypedPointer getWeaklyTypedPointer() const;

167
        /// \see ImageRepresentationLocal::getElementNormalized
168
169
        virtual float getElementNormalized(size_t index, size_t channel) const;

170
        /// \see ImageRepresentationLocal::getElementNormalized
171
172
        virtual float getElementNormalized(const tgt::svec3& position, size_t channel) const;

173
        /// \see ImageRepresentationLocal::getElementNormalizedLinear
174
175
        virtual float getElementNormalizedLinear(const tgt::vec3& position, size_t channel) const;

176
        /// \see ImageRepresentationLocal::setElementNormalized
177
178
        virtual void setElementNormalized(size_t index, size_t channel, float value);

179
        /// \see ImageRepresentationLocal::setElementNormalized
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        virtual void setElementNormalized(const tgt::svec3& position, size_t channel, float value);


        /**
         * Returns the image element at the given index \a index.
         * \param   index   Array index of the image element to return.
         * \return  Image element at index \a index.
         */
        ElementType& getElement(size_t index);

        /**
         * Returns the image element at the given position in image space.
         * \param   position    Pixel/voxel coordinates of the image element to return.
         * \return  Image element at the coordinates \a position.
         */
        ElementType& getElement(const tgt::svec3& position);

        /**
         * Returns the image element at the given index \a index.
         * \param   index   Array index of the image element to return.
         * \return  Image element at index \a index.
         */
        const ElementType& getElement(size_t index) const;

        /**
         * Returns the image element at the given position in image space.
         * \param   position    Pixel/voxel coordinates of the image element to return.
         * \return  Image element at the coordinates \a position.
         */
        const ElementType& getElement(const tgt::svec3& position) const;

        /**
         * Sets the image element at the given index to the value \a value.
         * \param   index   Array index of the image element to change.
         * \param   value   New value of the specified image element.
         */
        void setElement(size_t index, const ElementType& value);

        /**
         * Sets the image element at the given position in image space to the value \a value.
         * \param   position    Pixel/voxel coordinates of the image element to change.
         * \param   value       New value of the specified image element.
         */
        void setElement(const tgt::svec3& position, const ElementType& value);

        /**
         * Returns a pointer to the image data.
         * \return  _data
         */
        ElementType* getImageData();

        /**
         * Returns a const pointer to the image data.
         * \return  _data
         */
        const ElementType* getImageData() const;


        /**
         * Returns the image element at the given coordinates \a position using bi-/trilinear filtering.
         * \param   position    Pixel/voxel coordinates of the image element to return.
         * \return  Bi-/Trilinear filtered image element at the specified coordinates.
         */
        ElementType getElementLinear(const tgt::vec3 position) const;

    protected:

        ElementType* _data;

    };

// = Template implementation ======================================================================

    template<typename BASETYPE, size_t NUMCHANNELS>
254
    campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::GenericImageRepresentationLocal(ImageData* parent, ElementType* data)
255
        : ImageRepresentationLocal(parent, TypeTraits<BASETYPE, NUMCHANNELS>::weaklyTypedPointerBaseType)
256
257
        , _data(data)
    {
258
        tgtAssert(_parent->getNumChannels() == NUMCHANNELS, "Number of channels must match parent image's number of channels!");
259
260
261
262
263
264
265
266
267
268
269
270
        if (_data == 0) {
            size_t numElements = getNumElements();
            _data = new ElementType[numElements];
            memset(_data, 0, numElements * TypeTraits<BASETYPE, NUMCHANNELS>::elementSize);
        }
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::~GenericImageRepresentationLocal() {
        delete _data;
    }

271
272
273
274
275
    template<typename BASETYPE, size_t NUMCHANNELS>
    GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>* campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::tryConvertFrom(const AbstractImageRepresentation* source) {
        return 0;
    }

276
    template<typename BASETYPE, size_t NUMCHANNELS>
277
    GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>* campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::clone(ImageData* newParent) const {
278
279
280
281
        size_t numElements = getNumElements();
        ElementType* newData = new ElementType[numElements];
        memcpy(newData, _data, numElements * sizeof(ElementType));

282
        return new ThisType(newParent, newData);
283
284
285
286
287
288
289
290
291
292
293
294
295
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    size_t campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getLocalMemoryFootprint() const {
        return sizeof(*this) + getNumElements() * sizeof(ElementType);
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    size_t campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getVideoMemoryFootprint() const {
        return 0;
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
296
    GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>* campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getSubImage(ImageData* parent, const tgt::svec3& llf, const tgt::svec3& urb) const {
297
        tgtAssert(tgt::hand(tgt::lessThan(llf, urb)), "Coordinates in LLF must be component-wise smaller than the ones in URB!");
298
299

        const tgt::svec3& size = getSize();
300
        tgt::svec3 newSize = urb - llf;
301
302
        if (newSize == size) {
            // nothing has changed, just provide a copy:
303
            return clone(parent);
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        }

        tgt::bvec3 tmp(tgt::greaterThan(newSize, tgt::svec3(1)));
        size_t newDimensionality = 0;
        for (size_t i = 0; i < 3; ++i) {
            if (tmp[i] == true)
                ++newDimensionality;
        }

        size_t numBytesPerElement = sizeof(ElementType);
        size_t numElements = tgt::hmul(newSize);
        ElementType* newData = new ElementType[numElements];

        // slice image data into new array
        size_t index = 0;
319
320
        for (size_t z = llf.z; z < urb.z; ++z) {
            for (size_t y = llf.y; y < urb.y; ++y) {
321
322
323
324
325
326
                size_t offset = llf.x + (y * size.x) + (z * size.y * size.x);
                memcpy(newData + index, _data + offset, newSize.x * numBytesPerElement);
                index += newSize.x;
            }
        }        

327
        return new ThisType(parent, newData);
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    const WeaklyTypedPointer campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getWeaklyTypedPointer() const {
        return WeaklyTypedPointer(TypeTraits<BASETYPE, NUMCHANNELS>::weaklyTypedPointerBaseType, NUMCHANNELS, _data);
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    float campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getElementNormalized(size_t index, size_t channel) const {
        tgtAssert(channel >= 0 && channel < NUMCHANNELS, "Channel out of bounds!");
        return TypeNormalizer::normalizeToFloat(TypeTraits<BASETYPE, NUMCHANNELS>::getChannel(getElement(index), channel));
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    float campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getElementNormalized(const tgt::svec3& position, size_t channel) const {
        return getElementNormalized(_parent->positionToIndex(position), channel);
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    void campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::setElementNormalized(size_t index, size_t channel, float value) {
        tgtAssert(channel >= 0 && channel < NUMCHANNELS, "Channel out of bounds!");
        TypeTraits<BASETYPE, NUMCHANNELS>::setChannel(getElement(index), channel, TypeNormalizer::denormalizeFromFloat<BASETYPE>(value));
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    void campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::setElementNormalized(const tgt::svec3& position, size_t channel, float value) {
        setElementNormalized(_parent->positionToIndex(position), channel, value);
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    typename campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::ElementType& campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getElement(size_t position) {
        tgtAssert(position >= 0 && position < getNumElements(), "Position out of bounds!");
        return _data[position];
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    typename campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::ElementType& campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getElement(const tgt::svec3& position) {
        return getElement(_parent->positionToIndex(position));
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    const typename campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::ElementType& campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getElement(size_t position) const {
        tgtAssert(position >= 0 && position < getNumElements(), "Position out of bounds!");
        return _data[position];
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    const typename campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::ElementType& campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getElement(const tgt::svec3& position) const {
        return getElement(_parent->positionToIndex(position));
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    void campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::setElement(size_t position, const ElementType& value) {
        tgtAssert(position >= 0 && position < getNumElements(), "Position out of bounds!");
        _data[position] = value;

    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    void campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::setElement(const tgt::svec3& position, const ElementType& value) {
        _data[_parent->positionToIndex(position)] = value;
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    typename campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::ElementType* campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getImageData() {
        return _data;
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    const typename campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::ElementType* campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getImageData() const {
        return _data;
    }

    template<typename BASETYPE, size_t NUMCHANNELS>
    typename campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::ElementType campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getElementLinear(const tgt::vec3 position) const {
        // yet to be implemented
        // TODO: Check wether pixel/voxel coordinates lie on the edges or on the center of the pixels/voxels
        tgtAssert(false, "Yet to be implemented!");
        return ElementType(0);
    }


    template<typename BASETYPE, size_t NUMCHANNELS>
    float campvis::GenericImageRepresentationLocal<BASETYPE, NUMCHANNELS>::getElementNormalizedLinear(const tgt::vec3& position, size_t channel) const {
        tgt::vec3 posAbs = tgt::max(position - 0.5f, tgt::vec3::zero);
        tgt::vec3 p = posAbs - floor(posAbs); // get decimal part
        tgt::svec3 llb = tgt::svec3(posAbs);
        tgt::svec3 urf = tgt::svec3(ceil(posAbs));
        urf = min(urf, getSize() - tgt::svec3(1)); // clamp so the lookups do not exceed the dimensions
        llb = min(llb, getSize() - tgt::svec3(1)); // dito

        /*
            interpolate linearly
        */
        return  getElementNormalized(tgt::svec3(llb.x, llb.y, llb.z), channel) * (1.f-p.x)*(1.f-p.y)*(1.f-p.z) // llB
              + getElementNormalized(tgt::svec3(urf.x, llb.y, llb.z), channel) * (    p.x)*(1.f-p.y)*(1.f-p.z) // lrB
              + getElementNormalized(tgt::svec3(urf.x, urf.y, llb.z), channel) * (    p.x)*(    p.y)*(1.f-p.z) // urB
              + getElementNormalized(tgt::svec3(llb.x, urf.y, llb.z), channel) * (1.f-p.x)*(    p.y)*(1.f-p.z) // ulB
              + getElementNormalized(tgt::svec3(llb.x, llb.y, urf.z), channel) * (1.f-p.x)*(1.f-p.y)*(    p.z) // llF
              + getElementNormalized(tgt::svec3(urf.x, llb.y, urf.z), channel) * (    p.x)*(1.f-p.y)*(    p.z) // lrF
              + getElementNormalized(tgt::svec3(urf.x, urf.y, urf.z), channel) * (    p.x)*(    p.y)*(    p.z) // urF
              + getElementNormalized(tgt::svec3(llb.x, urf.y, urf.z), channel) * (1.f-p.x)*(    p.y)*(    p.z);// ulF
    }

}

#endif // GENERICIMAGEREPRESENTATIONLOCAL_H__