transform.py 20.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""transformation.py - transformation functions for converting the
                       concrete into the abstract syntax tree

Copyright 2016  by Eckhart Arnold (arnold@badw.de)
                Bavarian Academy of Sciences an Humanities (badw.de)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.  See the License for the specific language governing
permissions and limitations under the License.
"""

import inspect
from functools import partial, reduce, singledispatch

from DHParser.syntaxtree import WHITESPACE_PTYPE, TOKEN_PTYPE, MockParser, Node

try:
    import regex as re
except ImportError:
    import re
try:
    from typing import AbstractSet, Any, ByteString, Callable, cast, Container, Dict, \
        Iterator, List, NamedTuple, Sequence, Union, Text, Tuple
except ImportError:
    from .typing34 import AbstractSet, Any, ByteString, Callable, cast, Container, Dict, \
        Iterator, List, NamedTuple, Sequence, Union, Text, Tuple

from DHParser.toolkit import expand_table, smart_list

38
39
40
41
42
__all__ = ('TransformationDict',
           'TransformationProc',
           'ConditionFunc',
           'KeyFunc',
           'transformation_factory',
43
44
45
           'key_parser_name',
           'key_tag_name',
           'traverse',
46
           'is_named',
47
48
           'replace_by_single_child',
           'reduce_single_child',
49
           'replace_or_reduce',
50
51
           'replace_parser',
           'collapse',
52
           'merge_children',
53
54
           'replace_content',
           'apply_if',
55
           'is_anonymous',
56
57
58
59
           'is_whitespace',
           'is_empty',
           'is_expendable',
           'is_token',
60
           'is_one_of',
61
           'has_content',
62
           'remove_children_if',
63
64
65
66
67
68
69
70
           'remove_parser',
           'remove_content',
           'remove_first',
           'remove_last',
           'remove_whitespace',
           'remove_empty',
           'remove_expendables',
           'remove_brackets',
71
72
           'remove_infix_operator',
           'remove_single_child',
73
           'remove_tokens',
74
           'keep_children',
75
76
77
           'flatten',
           'forbid',
           'require',
78
79
80
81
           'assert_content',
           'assert_condition',
           'assert_has_children',
           'TRUE_CONDITION')
82
83


84
TransformationProc = Callable[[List[Node]], None]
85
TransformationDict = Dict
86
87
88
89
ConditionFunc = Callable  # Callable[[List[Node]], bool]
KeyFunc = Callable[[Node], str]


90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def transformation_factory(t=None):
    """Creates factory functions from transformation-functions that
    dispatch on the first parameter after the node parameter.

    Decorating a transformation-function that has more than merely the
    ``node``-parameter with ``transformation_factory`` creates a
    function with the same name, which returns a partial-function that
    takes just the node-parameter.

    Additionally, there is some some syntactic sugar for
    transformation-functions that receive a collection as their second
    parameter and do not have any further parameters. In this case a
    list of parameters passed to the factory function will be converted
    into a collection.

    Main benefit is readability of processing tables.

    Usage:
        @transformation_factory(AbtractSet[str])
109
        def remove_tokens(context, tokens):
110
111
112
            ...
      or, alternatively:
        @transformation_factory
113
        def remove_tokens(context, tokens: AbstractSet[str]):
114
115
116
117
118
119
            ...

    Example:
        trans_table = { 'expression': remove_tokens('+', '-') }
      instead of:
        trans_table = { 'expression': partial(remove_tokens, tokens={'+', '-'}) }
120
121
122
123
124

    Parameters:
        t:  type of the second argument of the transformation function,
            only necessary if the transformation functions' parameter list
            does not have type annotations.
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    """

    def decorator(f):
        sig = inspect.signature(f)
        params = list(sig.parameters.values())[1:]
        if len(params) == 0:
            return f  # '@transformer' not needed w/o free parameters
        assert t or params[0].annotation != params[0].empty, \
            "No type information on second parameter found! Please, use type " \
            "annotation or provide the type information via transfomer-decorator."
        p1type = t or params[0].annotation
        f = singledispatch(f)
        if len(params) == 1 and issubclass(p1type, Container) and not issubclass(p1type, Text) \
                and not issubclass(p1type, ByteString):
            def gen_special(*args):
                c = set(args) if issubclass(p1type, AbstractSet) else \
                    list(args) if issubclass(p1type, Sequence) else args
                d = {params[0].name: c}
                return partial(f, **d)

            f.register(p1type.__args__[0], gen_special)

        def gen_partial(*args, **kwargs):
            d = {p.name: arg for p, arg in zip(params, args)}
            d.update(kwargs)
            return partial(f, **d)

        f.register(p1type, gen_partial)
        return f

    if isinstance(t, type(lambda: 1)):
        # Provide for the case that transformation_factory has been
        # written as plain decorator and not as a function call that
        # returns the decorator proper.
159
        func = t
160
161
162
163
164
165
        t = None
        return decorator(func)
    else:
        return decorator


166
def key_parser_name(node: Node) -> str:
167
168
169
    return node.parser.name


170
def key_tag_name(node: Node) -> str:
171
172
173
    return node.tag_name


174
175
176
177
178
def traverse(root_node: Node,
             processing_table: Dict[str, List[Callable]],
             key_func: KeyFunc=key_tag_name) -> None:
    """
    Traverses the snytax tree starting with the given ``node`` depth
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    first and applies the sequences of callback-functions registered
    in the ``calltable``-dictionary.

    The most important use case is the transformation of a concrete
    syntax tree into an abstract tree (AST). But it is also imaginable
    to employ tree-traversal for the semantic analysis of the AST.

    In order to assign sequences of callback-functions to nodes, a
    dictionary ("processing table") is used. The keys usually represent
    tag names, but any other key function is possible. There exist
    three special keys:
        '+': always called (before any other processing function)
        '*': called for those nodes for which no (other) processing
             function appears in the table
        '~': always called (after any other processing function)

    Args:
        root_node (Node): The root-node of the syntax tree to be traversed
        processing_table (dict): node key -> sequence of functions that
            will be applied to matching nodes in order. This dictionary
199
200
            is interpreted as a `compact_table`. See
            `toolkit.expand_table` or ``EBNFCompiler.EBNFTransTable`
201
202
203
204
205
206
207
208
        key_func (function): A mapping key_func(node) -> keystr. The default
            key_func yields node.parser.name.

    Example:
        table = { "term": [replace_by_single_child, flatten],
            "factor, flowmarker, retrieveop": replace_by_single_child }
        traverse(node, table)
    """
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    # Is this optimazation really needed?
    if '__cache__' in processing_table:
        # assume that processing table has already been expanded
        table = processing_table
        cache = processing_table['__cache__']
    else:
        # normalize processing_table entries by turning single values into lists
        # with a single value
        table = {name: smart_list(call) for name, call in list(processing_table.items())}
        table = expand_table(table)
        cache = table.setdefault('__cache__', {})  # type: Dict[str, List[Callable]]
        # change processing table in place, so that table expansion does not get lost
        # between calls
        processing_table.clear();
        processing_table.update(table)

    # assert '__cache__' in processing_table
    # # Code without optimization
    # table = {name: smart_list(call) for name, call in list(processing_table.items())}
    # table = expand_table(table)
Eckhart Arnold's avatar
Eckhart Arnold committed
229
    # cache = {}  # type: Dict[str, List[Callable]]
230

231
232
    def traverse_recursive(context):
        node = context[-1]
233
234
        if node.children:
            for child in node.result:
235
236
                context.append(child)
                traverse_recursive(context)  # depth first
Eckhart Arnold's avatar
Eckhart Arnold committed
237
                node.error_flag = node.error_flag or child.error_flag  # propagate error flag
238
                context.pop()
239
240
241
242
243
244
245
246
247
248
249
250
251
252

        key = key_func(node)
        sequence = cache.get(key, None)
        if sequence is None:
            sequence = table.get('+', []) + \
                       table.get(key, table.get('*', [])) + \
                       table.get('~', [])
            # '+' always called (before any other processing function)
            # '*' called for those nodes for which no (other) processing function
            #     appears in the table
            # '~' always called (after any other processing function)
            cache[key] = sequence

        for call in sequence:
253
            call(context)
254

255
    traverse_recursive([root_node])
256
257
    # assert processing_table['__cache__']

258
259
260
261
262
263
264
265
266
267
268
269
270


# ------------------------------------------------
#
# rearranging transformations:
#     - tree may be rearranged (e.g.flattened)
#     - nodes that are not leaves may be dropped
#     - order is preserved
#     - leave content is preserved (though not necessarily the leaves themselves)
#
# ------------------------------------------------


271
def TRUE_CONDITION(context: List[Node]) -> bool:
272
273
274
    return True


275
def replace_child(node: Node):
276
277
278
279
280
281
282
283
    assert len(node.children) == 1
    if not node.children[0].parser.name:
        node.children[0].parser.name = node.parser.name
    node.parser = node.children[0].parser
    node._errors.extend(node.children[0]._errors)
    node.result = node.result[0].result


284
def reduce_child(node: Node):
285
286
287
288
289
    assert len(node.children) == 1
    node._errors.extend(node.children[0]._errors)
    node.result = node.result[0].result


290
@transformation_factory(Callable)
291
292
293
def replace_by_single_child(context: List[Node], condition: Callable=TRUE_CONDITION):
    """
    Remove single branch node, replacing it by its immediate descendant
294
    if and only if the condision on the descendant is true.
295
296
297
    (In case the descendant's name is empty (i.e. anonymous) the
    name of this node's parser is kept.)
    """
298
    node = context[-1]
299
300
301
302
303
    if len(node.children) == 1:
        context.append(node.children[0])
        if  condition(context):
            replace_child(node)
        context.pop()
304
305


306
@transformation_factory(Callable)
307
308
309
def reduce_single_child(context: List[Node], condition: Callable=TRUE_CONDITION):
    """
    Reduce a single branch node, by transferring the result of its
310
    immediate descendant to this node, but keeping this node's parser entry.
311
312
    If the condition evaluates to false on the descendant, it will not
    be reduced.
313
    """
314
    node = context[-1]
315
316
317
318
319
    if len(node.children) == 1:
        context.append(node.children[0])
        if condition(context):
            reduce_child(node)
        context.pop()
320
321


322
323
324
325
326
327
def is_named(context: List[Node]) -> bool:
    return context[-1].parser.name


def is_anonymous(context: List[Node]) -> bool:
    return not context[-1].parser.name
328
329
330


@transformation_factory(Callable)
331
332
333
def replace_or_reduce(context: List[Node], condition: Callable=is_named):
    """
    Replaces node by a single child, if condition is met on child,
334
335
    otherwise (i.e. if the child is anonymous) reduces the child.
    """
336
    node = context[-1]
337
338
339
340
341
342
343
    if len(node.children) == 1:
        context.append(node.children[0])
        if condition(context):
            replace_child(node)
        else:
            reduce_child(node)
        context.pop()
344
345
346


@transformation_factory
347
348
349
def replace_parser(context: List[Node], name: str):
    """
    Replaces the parser of a Node with a mock parser with the given
350
351
352
353
354
355
    name.

    Parameters:
        name(str): "NAME:PTYPE" of the surogate. The ptype is optional
        node(Node): The node where the parser shall be replaced
    """
356
    node = context[-1]
357
358
359
360
361
    name, ptype = (name.split(':') + [''])[:2]
    node.parser = MockParser(name, ptype)


@transformation_factory(Callable)
362
363
364
def flatten(context: List[Node], condition: Callable=is_anonymous, recursive: bool=True):
    """
    Flattens all children, that fulfil the given `condition`
365
366
367
368
369
370
371
372
373
374
375
376
    (default: all unnamed children). Flattening means that wherever a
    node has child nodes, the child nodes are inserted in place of the
    node.
     If the parameter `recursive` is `True` the same will recursively be
    done with the child-nodes, first. In other words, all leaves of
    this node and its child nodes are collected in-order as direct
    children of this node.
     Applying flatten recursively will result in these kinds of
    structural transformation:
        (1 (+ 2) (+ 3)     ->   (1 + 2 + 3)
        (1 (+ (2 + (3))))  ->   (1 + 2 + 3)
    """
377
    node = context[-1]
378
379
380
    if node.children:
        new_result = []
        for child in node.children:
381
382
            context.append(child)
            if child.children and condition(context):
383
                if recursive:
384
                    flatten(context, condition, recursive)
385
386
387
                new_result.extend(child.children)
            else:
                new_result.append(child)
388
            context.pop()
389
390
391
        node.result = tuple(new_result)


392
393
394
def collapse(context: List[Node]):
    """
    Collapses all sub-nodes of a node by replacing them with the
395
    string representation of the node.
396
    """
397
    node = context[-1]
398
399
400
401
    node.result = str(node)


@transformation_factory
402
403
404
405
406
def merge_children(context: List[Node], tag_names: List[str]):
    """
    Joins all children next to each other and with particular tag-
    names into a single child node with a mock-parser with the name of
    the first tag-name in the list.
407
    """
408
    node = context
409
    result = []
410
    name, ptype = ('', tag_names[0]) if tag_names[0][:1] == ':' else (tag_names[0], '')
411
    if node.children:
412
        i = 0
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
        L = len(node.children)
        while i < L:
            while i < L and not node.children[i].tag_name in tag_names:
                result.append(node.children[i])
                i += 1
            k = i + 1
            while (k < L and node.children[k].tag_name in tag_names
                   and bool(node.children[i].children) == bool(node.children[k].children)):
                k += 1
            if i < L:
                result.append(Node(MockParser(name, ptype),
                                   reduce(lambda a, b: a + b, (node.result for node in node.children[i:k]))))
            i = k
        node.result = tuple(result)


# ------------------------------------------------
#
# destructive transformations:
#     - tree may be rearranged (flattened),
#     - order is preserved
#     - but (irrelevant) leaves may be dropped
#     - errors of dropped leaves will be lost
#
# ------------------------------------------------


@transformation_factory
441
def replace_content(context: List[Node], func: Callable):  # Callable[[Node], ResultType]
442
443
444
    """Replaces the content of the node. ``func`` takes the node
    as an argument an returns the mapped result.
    """
445
    node = context[-1]
446
447
448
    node.result = func(node.result)


449
def is_whitespace(context: List[Node]) -> bool:
450
451
    """Removes whitespace and comments defined with the
    ``@comment``-directive."""
452
    return context[-1].parser.ptype == WHITESPACE_PTYPE
453
454


455
456
def is_empty(context: List[Node]) -> bool:
    return not context[-1].result
457
458


459
460
def is_expendable(context: List[Node]) -> bool:
    return is_empty(context) or is_whitespace(context)
461
462


463
464
def is_token(context: List[Node], tokens: AbstractSet[str] = frozenset()) -> bool:
    node = context[-1]
465
466
467
    return node.parser.ptype == TOKEN_PTYPE and (not tokens or node.result in tokens)


468
def is_one_of(context: List[Node], tag_name_set: AbstractSet[str]) -> bool:
469
470
    """Returns true, if the node's tag_name is on of the
    given tag names."""
471
    return context[-1].tag_name in tag_name_set
472
473


474
def has_content(context: List[Node], regexp: str) -> bool:
475
    """Checks a node's content against a regular expression."""
476
    return bool(re.match(regexp, str(context[-1])))
477
478


479
@transformation_factory(Callable)
480
481
def apply_if(context: List[Node], transformation: Callable, condition: Callable):
    """Applies a transformation only if a certain condition is met."""
482
    node = context[-1]
483
    if condition(node):
484
        transformation(context)
485
486


487
@transformation_factory(slice)
488
def keep_children(context: List[Node], section: slice = slice(None)):
489
    """Keeps only child-nodes which fall into a slice of the result field."""
490
    node = context[-1]
491
    if node.children:
492
        node.result = node.children[section]
493
494
495


@transformation_factory(Callable)
496
def remove_children_if(context: List[Node], condition: Callable, section: slice = slice(None)):
497
    """Removes all nodes from a slice of the result field if the function
498
    `condition(child_node)` evaluates to `True`."""
499
    node = context[-1]
500
    if node.children:
501
502
503
        c = node.children
        N = len(c)
        rng = range(*section.indices(N))
504
505
506
507
508
509
510
511
512
513
        node.result = tuple(c[i] for i in range(N)
                            if not i in rng or not condition(context + [c[i]]))
        # selection = []
        # for i in range(N):
        #     context.append(c[i])
        #     if not i in rng or not condition(context):
        #         selection.append(c[i])
        #     context.pop()
        # if len(selection) != c:
        #     node.result = tuple(selection)
514
515
516
517
518


remove_whitespace = remove_children_if(is_whitespace)  # partial(remove_children_if, condition=is_whitespace)
remove_empty = remove_children_if(is_empty)
remove_expendables = remove_children_if(is_expendable)  # partial(remove_children_if, condition=is_expendable)
519
520
521
522
523
remove_first = apply_if(keep_children(slice(1, None)), lambda nd: len(nd.children) > 1)
remove_last = apply_if(keep_children(slice(None, -1)), lambda nd: len(nd.children) > 1)
remove_brackets = apply_if(keep_children(slice(1, -1)), lambda nd: len(nd.children) >= 2)
remove_infix_operator = keep_children(slice(0, None, 2))
remove_single_child = apply_if(keep_children(slice(0)), lambda nd: len(nd.children) == 1)
524
525
526


@transformation_factory
527
def remove_tokens(context: List[Node], tokens: AbstractSet[str] = frozenset()):
528
529
530
    """Reomoves any among a particular set of tokens from the immediate
    descendants of a node. If ``tokens`` is the empty set, all tokens
    are removed."""
531
    remove_children_if(context, partial(is_token, tokens=tokens))
532
533
534


@transformation_factory
535
def remove_parser(context: List[Node], tag_names: AbstractSet[str]):
Eckhart Arnold's avatar
Eckhart Arnold committed
536
    """Removes children by tag name."""
537
    remove_children_if(context, partial(is_one_of, tag_name_set=tag_names))
538
539
540


@transformation_factory
541
def remove_content(context: List[Node], regexp: str):
542
    """Removes children depending on their string value."""
543
    remove_children_if(context, partial(has_content, regexp=regexp))
544
545
546
547


########################################################################
#
548
# AST semantic validation functions (EXPERIMENTAL!!!)
549
550
551
#
########################################################################

552
@transformation_factory(Callable)
553
def assert_condition(context: List[Node], condition: Callable, error_msg: str = '') -> bool:
554
    """Checks for `condition`; adds an error message if condition is not met."""
555
    node = context[-1]
556
    if not condition(context):
557
558
559
560
561
562
563
564
565
566
567
568
569
        if error_msg:
            node.add_error(error_msg % node.tag_name if error_msg.find("%s") > 0 else error_msg)
        else:
            cond_name = condition.__name__ if hasattr(condition, '__name__') \
                        else condition.__class__.__name__ if hasattr(condition, '__class__') \
                        else '<unknown>'
            node.add_error("transform.assert_condition: Failed to meet condition " + cond_name)


assert_has_children = assert_condition(lambda nd: nd.children, 'Element "%s" has no children')


@transformation_factory
570
def assert_content(context: List[Node], regexp: str):
571
    node = context[-1]
572
    if not has_content(context, regexp):
573
574
575
        node.add_error('Element "%s" violates %s on %s' %
                       (node.parser.name, str(regexp), str(node)))

576
577

@transformation_factory
578
def require(context: List[Node], child_tags: AbstractSet[str]):
579
    node = context[-1]
580
581
582
583
584
585
586
    for child in node.children:
        if child.tag_name not in child_tags:
            node.add_error('Element "%s" is not allowed inside "%s".' %
                           (child.parser.name, node.parser.name))


@transformation_factory
587
def forbid(context: List[Node], child_tags: AbstractSet[str]):
588
    node = context[-1]
589
590
591
592
    for child in node.children:
        if child.tag_name in child_tags:
            node.add_error('Element "%s" cannot be nested inside "%s".' %
                           (child.parser.name, node.parser.name))