transform.py 34.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# transform.py - transformation functions for converting the
#                concrete into the abstract syntax tree
#
# Copyright 2016  by Eckhart Arnold (arnold@badw.de)
#                 Bavarian Academy of Sciences an Humanities (badw.de)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.  See the License for the specific language governing
# permissions and limitations under the License.
18
19


20
21
22
"""
Module ``transform`` contains the functions for transforming the
concrete syntax tree (CST) into an abstract syntax tree (AST).
23

24
25
26
As these functions are very generic, they can in principle be
used for any kind of tree transformations, not necessarily only
for CST -> AST transformations.
27
28
"""

29

30
import collections.abc
31
32
33
import inspect
from functools import partial, reduce, singledispatch

34
from DHParser.error import Error
eckhart's avatar
eckhart committed
35
from DHParser.syntaxtree import Node, WHITESPACE_PTYPE, TOKEN_PTYPE, MockParser, ZOMBIE_NODE
36
37
from DHParser.toolkit import expand_table, smart_list, re, typing
from typing import AbstractSet, Any, ByteString, Callable, cast, Container, Dict, \
38
    Tuple, List, Sequence, Union, Text, GenericMeta
39

40
41
__all__ = ('TransformationDict',
           'TransformationProc',
42
           'TransformationFunc',
43
44
45
           'ConditionFunc',
           'KeyFunc',
           'transformation_factory',
46
47
48
           'key_parser_name',
           'key_tag_name',
           'traverse',
49
           'is_named',
50
           'replace_by_single_child',
Eckhart Arnold's avatar
Eckhart Arnold committed
51
           'reduce_single_child',
52
           'replace_or_reduce',
53
54
           'replace_parser',
           'collapse',
55
           'merge_children',
56
           'replace_content',
57
           'replace_content_by',
58
           'apply_if',
eckhart's avatar
eckhart committed
59
           'apply_unless',
60
           'traverse_locally',
61
           'is_anonymous',
62
63
64
65
           'is_whitespace',
           'is_empty',
           'is_expendable',
           'is_token',
66
           'is_one_of',
67
           'has_content',
di68kap's avatar
di68kap committed
68
           'has_parent',
69
70
71
72
73
74
75
76
           'lstrip',
           'rstrip',
           'strip',
           'keep_children',
           'keep_children_if',
           'keep_tokens',
           'keep_nodes',
           'keep_content',
77
           'remove_children_if',
eckhart's avatar
eckhart committed
78
           'remove_nodes',
79
80
81
82
83
           'remove_content',
           'remove_first',
           'remove_last',
           'remove_whitespace',
           'remove_empty',
di68kap's avatar
di68kap committed
84
           'remove_anonymous_empty',
85
86
           'remove_anonymous_expendables',
           'remove_anonymous_tokens',
87
88
           'remove_expendables',
           'remove_brackets',
89
90
           'remove_infix_operator',
           'remove_single_child',
91
92
93
94
           'remove_tokens',
           'flatten',
           'forbid',
           'require',
95
           'assert_content',
96
97
           'error_on',
           'warn_on',
eckhart's avatar
eckhart committed
98
           'assert_has_children')
99
100


101
TransformationProc = Callable[[List[Node]], None]
Eckhart Arnold's avatar
Eckhart Arnold committed
102
TransformationDict = Dict[str, Sequence[Callable]]
103
TransformationFunc = Union[Callable[[Node], Any], partial]
Eckhart Arnold's avatar
Eckhart Arnold committed
104
ProcessingTableType = Dict[str, Union[Sequence[Callable], TransformationDict]]
105
106
ConditionFunc = Callable  # Callable[[List[Node]], bool]
KeyFunc = Callable[[Node], str]
eckhart's avatar
eckhart committed
107
CriteriaType = Union[int, str, Callable]
108
109


110
def transformation_factory(t1=None, t2=None, t3=None, t4=None, t5=None):
111
    """Creates factory functions from transformation-functions that
112
    dispatch on the first parameter after the context parameter.
113
114

    Decorating a transformation-function that has more than merely the
Eckhart Arnold's avatar
Eckhart Arnold committed
115
    ``context``-parameter with ``transformation_factory`` creates a
116
    function with the same name, which returns a partial-function that
117
    takes just the context-parameter.
118
119
120
121
122
123
124
125
126

    Additionally, there is some some syntactic sugar for
    transformation-functions that receive a collection as their second
    parameter and do not have any further parameters. In this case a
    list of parameters passed to the factory function will be converted
    into a collection.

    Main benefit is readability of processing tables.

127
128
    Usage::

eckhart's avatar
eckhart committed
129
        @transformation_factory(AbstractSet[str])
130
        def remove_tokens(context, tokens):
131
            ...
132
133
134

    or, alternatively::

135
        @transformation_factory
136
        def remove_tokens(context, tokens: AbstractSet[str]):
137
138
            ...

139
140
    Example::

141
        trans_table = { 'expression': remove_tokens('+', '-') }
142
143
144

    instead of::

145
        trans_table = { 'expression': partial(remove_tokens, tokens={'+', '-'}) }
146
147

    Parameters:
148
        t1:  type of the second argument of the transformation function,
149
150
            only necessary if the transformation functions' parameter list
            does not have type annotations.
151
152
    """

153
154
155
156
157
158
159
160
161
162
163
    def type_guard(t):
        """Raises an error if type `t` is a generic type or could be mistaken
        for the type of the canonical first parameter "List[Node] of
        transformation functions. Returns `t`."""
        if isinstance(t, GenericMeta):
            raise TypeError("Generic Type %s not permitted\n in transformation_factory "
                            "decorator. Use the equivalent non-generic type instead!"
                            % str(t))
        if issubclass(List[Node], t):
            raise TypeError("Sequence type %s not permitted\nin transformation_factory "
                            "decorator, because it could be mistaken for a base class "
164
165
166
                            "of List[Node]\nwhich is the type of the canonical first "
                            "argument of transformation functions. Try 'tuple' instead!"
                            % str(t))
167
168
        return t

169
    def decorator(f):
170
        nonlocal t1
171
172
173
174
        sig = inspect.signature(f)
        params = list(sig.parameters.values())[1:]
        if len(params) == 0:
            return f  # '@transformer' not needed w/o free parameters
175
        assert t1 or params[0].annotation != params[0].empty, \
176
            "No type information on second parameter found! Please, use type " \
eckhart's avatar
eckhart committed
177
            "annotation or provide the type information via transformer-decorator."
178
        f = singledispatch(f)
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        p1type = params[0].annotation
        if t1 is None:
            t1 = type_guard(p1type)
        elif issubclass(p1type, type_guard(t1)):
            try:
                if len(params) == 1 and issubclass(p1type, Container) \
                        and not (issubclass(p1type, Text) or issubclass(p1type, ByteString)):
                    def gen_special(*args):
                        c = set(args) if issubclass(p1type, AbstractSet) else \
                            tuple(args) if issubclass(p1type, Sequence) else args
                        d = {params[0].name: c}
                        return partial(f, **d)

                    f.register(type_guard(p1type.__args__[0]), gen_special)
            except AttributeError:
                pass  # Union Type does not allow subclassing, but is not needed here
        else:
            raise TypeError("Annotated type %s is not a subclass of decorated type %s !"
                            % (str(p1type), str(t1)))
198
199
200
201
202
203

        def gen_partial(*args, **kwargs):
            d = {p.name: arg for p, arg in zip(params, args)}
            d.update(kwargs)
            return partial(f, **d)

204
        for t in (t1, t2, t3, t4, t5):
205
            if t:
206
                f.register(type_guard(t), gen_partial)
207
208
            else:
                break
209
210
        return f

211
    if isinstance(t1, type(lambda: 1)):
212
213
214
        # Provide for the case that transformation_factory has been
        # written as plain decorator and not as a function call that
        # returns the decorator proper.
215
216
        func = t1
        t1 = None
217
218
219
220
221
        return decorator(func)
    else:
        return decorator


222
def key_parser_name(node: Node) -> str:
223
224
225
    return node.parser.name


226
def key_tag_name(node: Node) -> str:
227
228
229
    return node.tag_name


230
def traverse(root_node: Node,
Eckhart Arnold's avatar
Eckhart Arnold committed
231
             processing_table: ProcessingTableType,
232
233
234
             key_func: KeyFunc=key_tag_name) -> None:
    """
    Traverses the snytax tree starting with the given ``node`` depth
235
    first and applies the sequences of callback-functions registered
236
    in the ``processing_table``-dictionary.
237
238
239
240
241
242
243
244
245

    The most important use case is the transformation of a concrete
    syntax tree into an abstract tree (AST). But it is also imaginable
    to employ tree-traversal for the semantic analysis of the AST.

    In order to assign sequences of callback-functions to nodes, a
    dictionary ("processing table") is used. The keys usually represent
    tag names, but any other key function is possible. There exist
    three special keys:
246
247
248
249
250

    - '+': always called (before any other processing function)
    - '*': called for those nodes for which no (other) processing
      function appears in the table
    - '~': always called (after any other processing function)
251
252
253
254
255

    Args:
        root_node (Node): The root-node of the syntax tree to be traversed
        processing_table (dict): node key -> sequence of functions that
            will be applied to matching nodes in order. This dictionary
256
257
            is interpreted as a ``compact_table``. See
            :func:`expand_table` or :func:`EBNFCompiler.EBNFTransTable`
258
259
260
        key_func (function): A mapping key_func(node) -> keystr. The default
            key_func yields node.parser.name.

261
262
    Example::

263
        table = { "term": [replace_by_single_child, flatten],
264
                  "factor, flowmarker, retrieveop": replace_by_single_child }
265
        traverse(node, table)
266

267
    """
268
269
270
    # Is this optimazation really needed?
    if '__cache__' in processing_table:
        # assume that processing table has already been expanded
eckhart's avatar
eckhart committed
271
        table = processing_table               # type: ProcessingTableType
eckhart's avatar
eckhart committed
272
        cache = cast(TransformationDict, processing_table['__cache__'])  # type: TransformationDict
273
    else:
274
275
        # normalize processing_table entries by turning single values
        # into lists with a single value
276
277
        table = {name: cast(Sequence[Callable], smart_list(call))
                 for name, call in list(processing_table.items())}
278
        table = expand_table(table)
eckhart's avatar
eckhart committed
279
280
        cache = cast(TransformationDict,
                     table.setdefault('__cache__', cast(TransformationDict, dict())))
281
282
        # change processing table in place, so its already expanded and cache filled next time
        processing_table.clear()
283
284
285
286
287
288
        processing_table.update(table)

    # assert '__cache__' in processing_table
    # # Code without optimization
    # table = {name: smart_list(call) for name, call in list(processing_table.items())}
    # table = expand_table(table)
Eckhart Arnold's avatar
Eckhart Arnold committed
289
    # cache = {}  # type: Dict[str, List[Callable]]
290

291
    def traverse_recursive(context):
eckhart's avatar
eckhart committed
292
        nonlocal cache
293
        node = context[-1]
294
        if node.children:
eckhart's avatar
eckhart committed
295
            context.append(ZOMBIE_NODE)
di68kap's avatar
di68kap committed
296
            for child in node.children:
eckhart's avatar
eckhart committed
297
                context[-1] = child
298
                traverse_recursive(context)  # depth first
eckhart's avatar
eckhart committed
299
            context.pop()
300
301

        key = key_func(node)
302
303
304
        try:
            sequence = cache[key]
        except KeyError:
305
306
307
            sequence = table.get('+', []) \
                + table.get(key, table.get('*', [])) \
                + table.get('~', [])
308
309
310
311
312
313
314
            # '+' always called (before any other processing function)
            # '*' called for those nodes for which no (other) processing function
            #     appears in the table
            # '~' always called (after any other processing function)
            cache[key] = sequence

        for call in sequence:
315
            call(context)
316

317
    traverse_recursive([root_node])
318
319
    # assert processing_table['__cache__']

320

321
#######################################################################
322
#
323
324
# meta transformations, i.e. transformations that call other
# transformations
325
#
326
#######################################################################
327
328


eckhart's avatar
eckhart committed
329
@transformation_factory(dict)
330
331
332
333
334
335
336
337
338
339
340
def traverse_locally(context: List[Node],
                     processing_table: Dict,            # actually: ProcessingTableType
                     key_func: Callable=key_tag_name):  # actually: KeyFunc
    """Transforms the syntax tree starting from the last node in the context
    according to the given processing table. The purpose of this function is
    to apply certain transformations locally, i.e. only for those nodes that
    have the last node in the context as their parent node.
    """
    traverse(context[-1], processing_table, key_func)


341
@transformation_factory(collections.abc.Callable)
342
343
344
345
346
347
def apply_if(context: List[Node], transformation: Callable, condition: Callable):
    """Applies a transformation only if a certain condition is met."""
    if condition(context):
        transformation(context)


348
@transformation_factory(collections.abc.Callable)
eckhart's avatar
eckhart committed
349
350
351
352
353
354
def apply_unless(context: List[Node], transformation: Callable, condition: Callable):
    """Applies a transformation if a certain condition is *not* met."""
    if not condition(context):
        transformation(context)


355
356
357
358
359
360
361
362
363
364
365
366
367
368
#######################################################################
#
# conditionals that determine whether the context (or the last node in
# the context for that matter) fulfill a specific condition.
# ---------------------------------------------------------------------
#
# The context of a node is understood as a list of all parent nodes
# leading up to and including the node itself. If represented as list,
# the last element of the list is the node itself.
#
#######################################################################


def is_single_child(context: List[Node]) -> bool:
eckhart's avatar
eckhart committed
369
    """Returns ``True`` if the current node does not have any siblings."""
370
371
372
373
    return len(context[-2].children) == 1


def is_named(context: List[Node]) -> bool:
eckhart's avatar
eckhart committed
374
    """Returns ``True`` if the current node's parser is a named parser."""
375
376
377
378
    return bool(context[-1].parser.name)


def is_anonymous(context: List[Node]) -> bool:
eckhart's avatar
eckhart committed
379
    """Returns ``True`` if the current node's parser is an anonymous parser."""
380
381
382
383
384
385
386
387
388
389
    return not context[-1].parser.name


def is_whitespace(context: List[Node]) -> bool:
    """Removes whitespace and comments defined with the
    ``@comment``-directive."""
    return context[-1].parser.ptype == WHITESPACE_PTYPE


def is_empty(context: List[Node]) -> bool:
eckhart's avatar
eckhart committed
390
    """Returns ``True`` if the current node's content is empty."""
391
392
393
394
    return not context[-1].result


def is_expendable(context: List[Node]) -> bool:
eckhart's avatar
eckhart committed
395
396
    """Returns ``True`` if the current node either is a node containing
    whitespace or an empty node."""
397
398
399
    return is_empty(context) or is_whitespace(context)


400
@transformation_factory(collections.abc.Set)
401
402
403
404
def is_token(context: List[Node], tokens: AbstractSet[str] = frozenset()) -> bool:
    """Checks whether the last node in the context has `ptype == TOKEN_PTYPE`
    and it's content matches one of the given tokens. Leading and trailing
    whitespace-tokens will be ignored. In case an empty set of tokens is passed,
eckhart's avatar
eckhart committed
405
    any token is a match.
406
407
    """
    def stripped(nd: Node) -> str:
408
        """Removes leading and trailing whitespace-nodes from content."""
409
410
411
412
413
        # assert node.parser.ptype == TOKEN_PTYPE
        if nd.children:
            i, k = 0, len(nd.children)
            while i < len(nd.children) and nd.children[i].parser.ptype == WHITESPACE_PTYPE:
                i += 1
414
            while k > 0 and nd.children[k - 1].parser.ptype == WHITESPACE_PTYPE:
415
416
417
418
                k -= 1
            return "".join(child.content for child in node.children[i:k])
        return nd.content
    node = context[-1]
419
    return node.parser.ptype == TOKEN_PTYPE and (not tokens or stripped(node) in tokens)
420
421


422
@transformation_factory(collections.abc.Set)
423
424
425
426
427
def is_one_of(context: List[Node], tag_name_set: AbstractSet[str]) -> bool:
    """Returns true, if the node's tag_name is one of the given tag names."""
    return context[-1].tag_name in tag_name_set


eckhart's avatar
eckhart committed
428
@transformation_factory
429
def has_content(context: List[Node], regexp: str) -> bool:
430
431
432
433
434
435
436
437
    """
    Checks a node's content against a regular expression.

    In contrast to ``re.match`` the regular expression must match the complete
    string and not just the beginning of the string to succeed!
    """
    if not regexp.endswith('$'):
        regexp += "$"
438
439
440
    return bool(re.match(regexp, context[-1].content))


441
@transformation_factory(collections.abc.Set)
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
def has_parent(context: List[Node], tag_name_set: AbstractSet[str]) -> bool:
    """Checks whether a node with one of the given tag names appears somewhere
     in the context before the last node in the context."""
    for i in range(2, len(context)):
        if context[-i].tag_name in tag_name_set:
            return True
    return False


#######################################################################
#
# utility functions (private)
#
#######################################################################


def _replace_by(node: Node, child: Node):
459
460
461
462
    if not child.parser.name:
        child.parser = MockParser(node.parser.name, child.parser.ptype)
        # parser names must not be overwritten, else: child.parser.name = node.parser.name
    node.parser = child.parser
eckhart's avatar
eckhart committed
463
    node.errors.extend(child.errors)
464
465
466
    node.result = child.result


467
def _reduce_child(node: Node, child: Node):
eckhart's avatar
eckhart committed
468
    node.errors.extend(child.errors)
469
470
471
    node.result = child.result


eckhart's avatar
eckhart committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# def _pick_child(context: List[Node], criteria: CriteriaType):
#     """Returns the first child that meets the criteria."""
#     if isinstance(criteria, int):
#         try:
#             return context[-1].children[criteria]
#         except IndexError:
#             return None
#     elif isinstance(criteria, str):
#         for child in context[-1].children:
#             if child.tag_name == criteria:
#                 return child
#         return None
#     else:  # assume criteria has type ConditionFunc
#         for child in context[-1].children:
#             context.append(child)
#             evaluation = criteria(context)
#             context.pop()
#             if evaluation:
#                 return child
#         return None
492
493


494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
#######################################################################
#
# rearranging transformations
#
# - tree may be rearranged (e.g.flattened)
# - nodes that are not leaves may be dropped
# - order is preserved
# - leave content is preserved (though not necessarily the leaves
#   themselves)
#
#######################################################################


# @transformation_factory(int, str, Callable)
# def replace_by_child(context: List[Node], criteria: CriteriaType=is_single_child):
#     """
#     Replaces a node by the first of its immediate descendants
#     that meets the `criteria`. The criteria can either be the
#     index of the child (counting from zero), or the tag name or
#     a boolean-valued function on the context of the child.
#     If no child matching the criteria is found, the node will
#     not be replaced.
#     With the default value for `criteria` the same semantics is
#     the same that of `replace_by_single_child`.
#     """
#     child = _pick_child(context, criteria)
#     if child:
#         _replace_by(context[-1], child)
#
#
# @transformation_factory(int, str, Callable)
# def content_from_child(context: List[Node], criteria: CriteriaType = is_single_child):
#     """
#     Reduces a node, by transferring the result of the first of its
#     immediate descendants that meets the `criteria` to this node,
#     but keeping this node's parser entry. The criteria can either
#     be the index of the child (counting from zero), or the tag
#     name or a boolean-valued function on the context of the child.
#     If no child matching the criteria is found, the node will
#     not be replaced.
#     With the default value for `criteria` this has the same semantics
#     as `content_from_single_child`.
#     """
#     child = _pick_child(context, criteria)
#     if child:
#         _reduce_child(context[-1], child)
540
541


542
543
def replace_by_single_child(context: List[Node]):
    """
544
545
546
    Removes single branch node, replacing it by its immediate descendant.
    Replacement only takes place, if the last node in the context has
    exactly one child.
547
548
549
    """
    node = context[-1]
    if len(node.children) == 1:
550
        _replace_by(node, node.children[0])
551
552


Eckhart Arnold's avatar
Eckhart Arnold committed
553
def reduce_single_child(context: List[Node]):
554
    """
555
    Reduces a single branch node by transferring the result of its
556
    immediate descendant to this node, but keeping this node's parser entry.
557
558
    Reduction only takes place if the last node in the context has
    exactly one child.
559
560
561
    """
    node = context[-1]
    if len(node.children) == 1:
562
        _reduce_child(node, node.children[0])
563
564


565
@transformation_factory(collections.abc.Callable)
566
567
568
def replace_or_reduce(context: List[Node], condition: Callable=is_named):
    """
    Replaces node by a single child, if condition is met on child,
569
570
    otherwise (i.e. if the child is anonymous) reduces the child.
    """
571
    node = context[-1]
572
    if len(node.children) == 1:
di68kap's avatar
di68kap committed
573
        child = node.children[0]
574
        if condition(context):
575
            _replace_by(node, child)
576
        else:
577
            _reduce_child(node, child)
578
579
580


@transformation_factory
581
582
583
def replace_parser(context: List[Node], name: str):
    """
    Replaces the parser of a Node with a mock parser with the given
584
585
586
    name.

    Parameters:
587
        context: the context where the parser shall be replaced
eckhart's avatar
eckhart committed
588
        name: "NAME:PTYPE" of the surrogate. The ptype is optional
589
    """
590
    node = context[-1]
591
592
593
594
    name, ptype = (name.split(':') + [''])[:2]
    node.parser = MockParser(name, ptype)


595
@transformation_factory(collections.abc.Callable)
596
597
def flatten(context: List[Node], condition: Callable=is_anonymous, recursive: bool=True):
    """
598
    Flattens all children, that fulfil the given ``condition``
599
600
601
    (default: all unnamed children). Flattening means that wherever a
    node has child nodes, the child nodes are inserted in place of the
    node.
602
603

    If the parameter ``recursive`` is ``True`` the same will recursively be
604
605
606
    done with the child-nodes, first. In other words, all leaves of
    this node and its child nodes are collected in-order as direct
    children of this node.
607
608
609
610

    Applying flatten recursively will result in these kinds of
    structural transformation::

di68kap's avatar
di68kap committed
611
        (1 (+ 2) (+ 3))    ->   (1 + 2 + 3)
612
613
        (1 (+ (2 + (3))))  ->   (1 + 2 + 3)
    """
614
    node = context[-1]
615
    if node.children:
Eckhart Arnold's avatar
Eckhart Arnold committed
616
        new_result = []     # type: List[Node]
eckhart's avatar
eckhart committed
617
        context.append(ZOMBIE_NODE)
618
        for child in node.children:
eckhart's avatar
eckhart committed
619
            context[-1] = child
620
            if child.children and condition(context):
621
                if recursive:
622
                    flatten(context, condition, recursive)
623
624
625
                new_result.extend(child.children)
            else:
                new_result.append(child)
eckhart's avatar
eckhart committed
626
        context.pop()
627
628
629
        node.result = tuple(new_result)


630
631
632
def collapse(context: List[Node]):
    """
    Collapses all sub-nodes of a node by replacing them with the
633
    string representation of the node.
634
    """
635
    node = context[-1]
636
    node.result = node.content
637
638


639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
# @transformation_factory
# def collect_leaves(context: List[Node], whitespace: str=''):
#     """
#     Collects all leave nodes dropping any intermediary nodes.
#     Optionally adds whitespace between the nodes.
#     """
#     assert context[-1].children
#     node = context[-1]
#     leaves_iterator = node.select(lambda nd: not nd.children, include_root=False)
#     if whitespace:
#         mock_ws_parser = MockParser('', WHITESPACE_PTYPE)
#         result = []
#         for leave in leaves_iterator:
#             result.append(leave)
#             result.append(Node(mock_ws_parser, whitespace, leafhint=True))
#         result.pop()
#         node.result = tuple(result)
#     else:
#         node.result = (nd for nd in leaves_iterator)


660
661
@transformation_factory(tuple)
def merge_children(context: List[Node], tag_names: Tuple[str]):
662
    """
663
664
665
    Joins all children next to each other and with particular tag-names
    into a single child node with a mock-parser with the name of the
    first tag-name in the list.
666
    """
Eckhart Arnold's avatar
Eckhart Arnold committed
667
    node = context[-1]
668
    result = []
669
    name, ptype = ('', tag_names[0]) if tag_names[0][:1] == ':' else (tag_names[0], '')
670
    if node.children:
671
        i = 0
672
673
674
675
676
677
678
679
680
681
682
        L = len(node.children)
        while i < L:
            while i < L and not node.children[i].tag_name in tag_names:
                result.append(node.children[i])
                i += 1
            k = i + 1
            while (k < L and node.children[k].tag_name in tag_names
                   and bool(node.children[i].children) == bool(node.children[k].children)):
                k += 1
            if i < L:
                result.append(Node(MockParser(name, ptype),
Eckhart Arnold's avatar
Eckhart Arnold committed
683
684
                                   reduce(lambda a, b: a + b,
                                          (node.children for node in node.children[i:k]))))
685
686
687
688
            i = k
        node.result = tuple(result)


689
@transformation_factory(collections.abc.Callable)
690
def replace_content(context: List[Node], func: Callable):  # Callable[[Node], ResultType]
di68kap's avatar
di68kap committed
691
    """Replaces the content of the node. ``func`` takes the node's result
692
693
    as an argument an returns the mapped result.
    """
694
    node = context[-1]
695
696
697
    node.result = func(node.result)


698
@transformation_factory  # (str)
699
700
701
702
703
704
705
def replace_content_by(context: List[Node], content: str):  # Callable[[Node], ResultType]
    """Replaces the content of the node with the given text content.
    """
    node = context[-1]
    node.result = content


706
707
708
709
710
711
712
713
714
#######################################################################
#
# destructive transformations:
#
# - leaves may be dropped (e.g. if deemed irrelevant)
# - errors of dropped leaves will be lost
# - no promise that order will be preserved
#
#######################################################################
715
716


717
@transformation_factory(collections.abc.Callable)
718
719
720
721
722
723
724
725
726
727
728
729
730
def lstrip(context: List[Node], condition: Callable = is_expendable):
    """Recursively removes all leading child-nodes that fulfill a given condition."""
    node = context[-1]
    i = 1
    while i > 0 and node.children:
        lstrip(context + [node.children[0]], condition)
        i, L = 0, len(node.children)
        while i < L and condition(context + [node.children[i]]):
            i += 1
        if i > 0:
            node.result = node.children[i:]


731
@transformation_factory(collections.abc.Callable)
732
733
734
735
736
737
738
739
740
741
742
743
744
745
def rstrip(context: List[Node], condition: Callable = is_expendable):
    """Recursively removes all leading nodes that fulfill a given condition."""
    node = context[-1]
    i, L = 0, len(node.children)
    while i < L and node.children:
        rstrip(context + [node.children[-1]], condition)
        L = len(node.children)
        i = L
        while i > 0 and condition(context + [node.children[i-1]]):
            i -= 1
        if i < L:
            node.result = node.children[:i]


746
@transformation_factory(collections.abc.Callable)
eckhart's avatar
eckhart committed
747
def strip(context: List[Node], condition: Callable = is_expendable):
748
749
750
751
752
    """Removes leading and trailing child-nodes that fulfill a given condition."""
    lstrip(context, condition)
    rstrip(context, condition)


753
@transformation_factory  # (slice)
754
def keep_children(context: List[Node], section: slice = slice(None)):
755
    """Keeps only child-nodes which fall into a slice of the result field."""
756
    node = context[-1]
757
    if node.children:
758
        node.result = node.children[section]
759
760


761
@transformation_factory(collections.abc.Callable)
762
763
764
765
766
767
768
def keep_children_if(context: List[Node], condition: Callable):
    """Removes all children for which `condition()` returns `True`."""
    node = context[-1]
    if node.children:
        node.result = tuple(c for c in node.children if condition(context + [c]))


769
@transformation_factory(collections.abc.Set)
eckhart's avatar
eckhart committed
770
def keep_tokens(context: List[Node], tokens: AbstractSet[str]=frozenset()):
771
772
773
774
775
776
    """Removes any among a particular set of tokens from the immediate
    descendants of a node. If ``tokens`` is the empty set, all tokens
    are removed."""
    keep_children_if(context, partial(is_token, tokens=tokens))


777
@transformation_factory(collections.abc.Set)
778
779
780
781
782
783
784
785
786
787
788
def keep_nodes(context: List[Node], tag_names: AbstractSet[str]):
    """Removes children by tag name."""
    keep_children_if(context, partial(is_one_of, tag_name_set=tag_names))


@transformation_factory
def keep_content(context: List[Node], regexp: str):
    """Removes children depending on their string value."""
    keep_children_if(context, partial(has_content, regexp=regexp))


789
@transformation_factory(collections.abc.Callable)
790
def remove_children_if(context: List[Node], condition: Callable):
791
792
793
794
    """Removes all children for which `condition()` returns `True`."""
    node = context[-1]
    if node.children:
        node.result = tuple(c for c in node.children if not condition(context + [c]))
eckhart's avatar
eckhart committed
795
    pass
796

eckhart's avatar
eckhart committed
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
# @transformation_factory(Callable)
# def remove_children(context: List[Node],
#                     condition: Callable = TRUE_CONDITION,
#                     section: slice = slice(None)):
#     """Removes all nodes from a slice of the result field if the function
#     `condition(child_node)` evaluates to `True`."""
#     node = context[-1]
#     if node.children:
#         c = node.children
#         N = len(c)
#         rng = range(*section.indices(N))
#         node.result = tuple(c[i] for i in range(N)
#                             if i not in rng or not condition(context + [c[i]]))
#         # selection = []
#         # for i in range(N):
#         #     context.append(c[i])
#         #     if not i in rng or not condition(context):
#         #         selection.append(c[i])
#         #     context.pop()
#         # if len(selection) != c:
#         #     node.result = tuple(selection)
818
819


820
821
remove_whitespace = remove_children_if(is_whitespace)
# partial(remove_children_if, condition=is_whitespace)
822
remove_empty = remove_children_if(is_empty)
di68kap's avatar
di68kap committed
823
remove_anonymous_empty = remove_children_if(lambda ctx: is_empty(ctx) and is_anonymous(ctx))
824
825
826
827
remove_expendables = remove_children_if(is_expendable)
# partial(remove_children_if, condition=is_expendable)
remove_anonymous_expendables = remove_children_if(lambda ctx: is_anonymous(ctx)
                                                  and is_expendable(ctx))
828
remove_anonymous_tokens = remove_children_if(lambda ctx: is_token(ctx) and is_anonymous(ctx))
829
830
831
remove_first = apply_if(keep_children(slice(1, None)), lambda ctx: len(ctx[-1].children) > 1)
remove_last = apply_if(keep_children(slice(None, -1)), lambda ctx: len(ctx[-1].children) > 1)
remove_brackets = apply_if(keep_children(slice(1, -1)), lambda ctx: len(ctx[-1].children) >= 2)
832
remove_infix_operator = keep_children(slice(0, None, 2))
833
remove_single_child = apply_if(keep_children(slice(0)), lambda ctx: len(ctx[-1].children) == 1)
834
835


836
@transformation_factory(collections.abc.Set)
eckhart's avatar
eckhart committed
837
def remove_tokens(context: List[Node], tokens: AbstractSet[str]=frozenset()):
838
    """Removes any among a particular set of tokens from the immediate
839
840
    descendants of a node. If ``tokens`` is the empty set, all tokens
    are removed."""
841
    remove_children_if(context, partial(is_token, tokens=tokens))
842
843


844
@transformation_factory(collections.abc.Set)
eckhart's avatar
eckhart committed
845
def remove_nodes(context: List[Node], tag_names: AbstractSet[str]):
Eckhart Arnold's avatar
Eckhart Arnold committed
846
    """Removes children by tag name."""
847
    remove_children_if(context, partial(is_one_of, tag_name_set=tag_names))
848
849
850


@transformation_factory
851
def remove_content(context: List[Node], regexp: str):
852
    """Removes children depending on their string value."""
853
    remove_children_if(context, partial(has_content, regexp=regexp))
854
855
856
857


########################################################################
#
858
# AST semantic validation functions (EXPERIMENTAL!!!)
859
860
861
#
########################################################################

862
@transformation_factory(collections.abc.Callable)
863
864
865
866
def error_on(context: List[Node], condition: Callable, error_msg: str = ''):
    """
    Checks for `condition`; adds an error message if condition is not met.
    """
867
    node = context[-1]
868
    if not condition(context):
869
870
871
872
873
874
        if error_msg:
            node.add_error(error_msg % node.tag_name if error_msg.find("%s") > 0 else error_msg)
        else:
            cond_name = condition.__name__ if hasattr(condition, '__name__') \
                        else condition.__class__.__name__ if hasattr(condition, '__class__') \
                        else '<unknown>'
875
876
877
            node.add_error("transform.error_on: Failed to meet condition " + cond_name)


878
@transformation_factory(collections.abc.Callable)
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
def warn_on(context: List[Node], condition: Callable, warning: str = ''):
    """
    Checks for `condition`; adds an warning message if condition is not met.
    """
    node = context[-1]
    if not condition(context):
        if warning:
            node.add_error(warning % node.tag_name if warning.find("%s") > 0 else warning,
                           Error.WARNING)
        else:
            cond_name = condition.__name__ if hasattr(condition, '__name__') \
                        else condition.__class__.__name__ if hasattr(condition, '__class__') \
                        else '<unknown>'
            node.add_error("transform.warn_on: Failed to meet condition " + cond_name,
                           Error.WARNING)
894
895


896
assert_has_children = error_on(lambda nd: nd.children, 'Element "%s" has no children')
897
898
899


@transformation_factory
900
def assert_content(context: List[Node], regexp: str):
901
    node = context[-1]
902
    if not has_content(context, regexp):
eckhart's avatar
eckhart committed
903
        context[0].new_error(node, 'Element "%s" violates %s on %s' %
eckhart's avatar
eckhart committed
904
                             (node.parser.name, str(regexp), node.content))
905

906

907
@transformation_factory(collections.abc.Set)
908
def require(context: List[Node], child_tags: AbstractSet[str]):
909
    node = context[-1]
910
911
    for child in node.children:
        if child.tag_name not in child_tags:
eckhart's avatar
eckhart committed
912
            context[0].new_error(node, 'Element "%s" is not allowed inside "%s".' %
eckhart's avatar
eckhart committed
913
                                 (child.parser.name, node.parser.name))
914
915


916
@transformation_factory(collections.abc.Set)
917
def forbid(context: List[Node], child_tags: AbstractSet[str]):
918
    node = context[-1]
919
920
    for child in node.children:
        if child.tag_name in child_tags:
eckhart's avatar
eckhart committed
921
            context[0].new_error(node, 'Element "%s" cannot be nested inside "%s".' %
eckhart's avatar
eckhart committed
922
                                 (child.parser.name, node.parser.name))