transform.py 21.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
"""transformation.py - transformation functions for converting the
                       concrete into the abstract syntax tree

Copyright 2016  by Eckhart Arnold (arnold@badw.de)
                Bavarian Academy of Sciences an Humanities (badw.de)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.  See the License for the specific language governing
permissions and limitations under the License.
"""

import inspect
from functools import partial, reduce, singledispatch

23
from DHParser.syntaxtree import Node, WHITESPACE_PTYPE, TOKEN_PTYPE, MockParser
24
25
26
27
28
29
30
31
32
33
34
35
36
37

try:
    import regex as re
except ImportError:
    import re
try:
    from typing import AbstractSet, Any, ByteString, Callable, cast, Container, Dict, \
        Iterator, List, NamedTuple, Sequence, Union, Text, Tuple
except ImportError:
    from .typing34 import AbstractSet, Any, ByteString, Callable, cast, Container, Dict, \
        Iterator, List, NamedTuple, Sequence, Union, Text, Tuple

from DHParser.toolkit import expand_table, smart_list

38
39
40
41
42
__all__ = ('TransformationDict',
           'TransformationProc',
           'ConditionFunc',
           'KeyFunc',
           'transformation_factory',
43
44
45
           'key_parser_name',
           'key_tag_name',
           'traverse',
46
           'is_named',
47
48
           'replace_by_single_child',
           'reduce_single_child',
49
           'replace_or_reduce',
50
51
           'replace_parser',
           'collapse',
52
           'merge_children',
53
54
           'replace_content',
           'apply_if',
55
           'is_anonymous',
56
57
58
59
           'is_whitespace',
           'is_empty',
           'is_expendable',
           'is_token',
60
           'is_one_of',
61
           'has_content',
62
           'remove_children_if',
63
64
65
66
67
68
69
70
           'remove_parser',
           'remove_content',
           'remove_first',
           'remove_last',
           'remove_whitespace',
           'remove_empty',
           'remove_expendables',
           'remove_brackets',
71
72
           'remove_infix_operator',
           'remove_single_child',
73
           'remove_tokens',
74
           'keep_children',
75
76
77
           'flatten',
           'forbid',
           'require',
78
79
80
81
           'assert_content',
           'assert_condition',
           'assert_has_children',
           'TRUE_CONDITION')
82
83


84
TransformationProc = Callable[[List[Node]], None]
Eckhart Arnold's avatar
Eckhart Arnold committed
85
86
TransformationDict = Dict[str, Sequence[Callable]]
ProcessingTableType = Dict[str, Union[Sequence[Callable], TransformationDict]]
87
88
89
90
ConditionFunc = Callable  # Callable[[List[Node]], bool]
KeyFunc = Callable[[Node], str]


91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
def transformation_factory(t=None):
    """Creates factory functions from transformation-functions that
    dispatch on the first parameter after the node parameter.

    Decorating a transformation-function that has more than merely the
    ``node``-parameter with ``transformation_factory`` creates a
    function with the same name, which returns a partial-function that
    takes just the node-parameter.

    Additionally, there is some some syntactic sugar for
    transformation-functions that receive a collection as their second
    parameter and do not have any further parameters. In this case a
    list of parameters passed to the factory function will be converted
    into a collection.

    Main benefit is readability of processing tables.

    Usage:
        @transformation_factory(AbtractSet[str])
110
        def remove_tokens(context, tokens):
111
112
113
            ...
      or, alternatively:
        @transformation_factory
114
        def remove_tokens(context, tokens: AbstractSet[str]):
115
116
117
118
119
120
            ...

    Example:
        trans_table = { 'expression': remove_tokens('+', '-') }
      instead of:
        trans_table = { 'expression': partial(remove_tokens, tokens={'+', '-'}) }
121
122
123
124
125

    Parameters:
        t:  type of the second argument of the transformation function,
            only necessary if the transformation functions' parameter list
            does not have type annotations.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    """

    def decorator(f):
        sig = inspect.signature(f)
        params = list(sig.parameters.values())[1:]
        if len(params) == 0:
            return f  # '@transformer' not needed w/o free parameters
        assert t or params[0].annotation != params[0].empty, \
            "No type information on second parameter found! Please, use type " \
            "annotation or provide the type information via transfomer-decorator."
        p1type = t or params[0].annotation
        f = singledispatch(f)
        if len(params) == 1 and issubclass(p1type, Container) and not issubclass(p1type, Text) \
                and not issubclass(p1type, ByteString):
            def gen_special(*args):
                c = set(args) if issubclass(p1type, AbstractSet) else \
                    list(args) if issubclass(p1type, Sequence) else args
                d = {params[0].name: c}
                return partial(f, **d)

            f.register(p1type.__args__[0], gen_special)

        def gen_partial(*args, **kwargs):
            d = {p.name: arg for p, arg in zip(params, args)}
            d.update(kwargs)
            return partial(f, **d)

        f.register(p1type, gen_partial)
        return f

    if isinstance(t, type(lambda: 1)):
        # Provide for the case that transformation_factory has been
        # written as plain decorator and not as a function call that
        # returns the decorator proper.
160
        func = t
161
162
163
164
165
166
        t = None
        return decorator(func)
    else:
        return decorator


167
def key_parser_name(node: Node) -> str:
168
169
170
    return node.parser.name


171
def key_tag_name(node: Node) -> str:
172
173
174
    return node.tag_name


175
def traverse(root_node: Node,
Eckhart Arnold's avatar
Eckhart Arnold committed
176
             processing_table: ProcessingTableType,
177
178
179
             key_func: KeyFunc=key_tag_name) -> None:
    """
    Traverses the snytax tree starting with the given ``node`` depth
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    first and applies the sequences of callback-functions registered
    in the ``calltable``-dictionary.

    The most important use case is the transformation of a concrete
    syntax tree into an abstract tree (AST). But it is also imaginable
    to employ tree-traversal for the semantic analysis of the AST.

    In order to assign sequences of callback-functions to nodes, a
    dictionary ("processing table") is used. The keys usually represent
    tag names, but any other key function is possible. There exist
    three special keys:
        '+': always called (before any other processing function)
        '*': called for those nodes for which no (other) processing
             function appears in the table
        '~': always called (after any other processing function)

    Args:
        root_node (Node): The root-node of the syntax tree to be traversed
        processing_table (dict): node key -> sequence of functions that
            will be applied to matching nodes in order. This dictionary
200
201
            is interpreted as a `compact_table`. See
            `toolkit.expand_table` or ``EBNFCompiler.EBNFTransTable`
202
203
204
205
206
207
208
209
        key_func (function): A mapping key_func(node) -> keystr. The default
            key_func yields node.parser.name.

    Example:
        table = { "term": [replace_by_single_child, flatten],
            "factor, flowmarker, retrieveop": replace_by_single_child }
        traverse(node, table)
    """
210
211
212
213
214
215
    # Is this optimazation really needed?
    if '__cache__' in processing_table:
        # assume that processing table has already been expanded
        table = processing_table
        cache = processing_table['__cache__']
    else:
216
217
        # normalize processing_table entries by turning single values
        # into lists with a single value
218
219
        table = {name: smart_list(call) for name, call in list(processing_table.items())}
        table = expand_table(table)
Eckhart Arnold's avatar
Eckhart Arnold committed
220
        cache = table.setdefault('__cache__', cast(TransformationDict, dict()))
221
222
        # change processing table in place, so its already expanded and cache filled next time
        processing_table.clear()
223
224
225
226
227
228
        processing_table.update(table)

    # assert '__cache__' in processing_table
    # # Code without optimization
    # table = {name: smart_list(call) for name, call in list(processing_table.items())}
    # table = expand_table(table)
Eckhart Arnold's avatar
Eckhart Arnold committed
229
    # cache = {}  # type: Dict[str, List[Callable]]
230

231
232
    def traverse_recursive(context):
        node = context[-1]
233
234
        if node.children:
            for child in node.result:
235
236
                context.append(child)
                traverse_recursive(context)  # depth first
237
                node.error_flag = max(node.error_flag, child.error_flag)  # propagate error flag
238
                context.pop()
239
240

        key = key_func(node)
241
242
243
        try:
            sequence = cache[key]
        except KeyError:
244
245
246
247
248
249
250
251
252
253
            sequence = table.get('+', []) + \
                       table.get(key, table.get('*', [])) + \
                       table.get('~', [])
            # '+' always called (before any other processing function)
            # '*' called for those nodes for which no (other) processing function
            #     appears in the table
            # '~' always called (after any other processing function)
            cache[key] = sequence

        for call in sequence:
254
            call(context)
255

256
    traverse_recursive([root_node])
257
258
    # assert processing_table['__cache__']

259
260
261
262
263
264
265
266
267
268
269
270
271


# ------------------------------------------------
#
# rearranging transformations:
#     - tree may be rearranged (e.g.flattened)
#     - nodes that are not leaves may be dropped
#     - order is preserved
#     - leave content is preserved (though not necessarily the leaves themselves)
#
# ------------------------------------------------


272
def TRUE_CONDITION(context: List[Node]) -> bool:
273
274
275
    return True


276
def replace_child(node: Node):
277
    assert len(node.children) == 1
278
279
280
281
282
283
284
    child = node.children[0]
    if not child.parser.name:
        child.parser = MockParser(node.parser.name, child.parser.ptype)
        # parser names must not be overwritten, else: child.parser.name = node.parser.name
    node.parser = child.parser
    node._errors.extend(child._errors)
    node.result = child.result
285
286


287
def reduce_child(node: Node):
288
289
    assert len(node.children) == 1
    node._errors.extend(node.children[0]._errors)
Eckhart Arnold's avatar
Eckhart Arnold committed
290
    node.result = node.children[0].result
291
292


293
@transformation_factory(Callable)
294
295
296
def replace_by_single_child(context: List[Node], condition: Callable=TRUE_CONDITION):
    """
    Remove single branch node, replacing it by its immediate descendant
297
    if and only if the condision on the descendant is true.
298
299
300
    (In case the descendant's name is empty (i.e. anonymous) the
    name of this node's parser is kept.)
    """
301
    node = context[-1]
302
303
304
305
306
    if len(node.children) == 1:
        context.append(node.children[0])
        if  condition(context):
            replace_child(node)
        context.pop()
307
308


309
@transformation_factory(Callable)
310
311
312
def reduce_single_child(context: List[Node], condition: Callable=TRUE_CONDITION):
    """
    Reduce a single branch node, by transferring the result of its
313
    immediate descendant to this node, but keeping this node's parser entry.
314
315
    If the condition evaluates to false on the descendant, it will not
    be reduced.
316
    """
317
    node = context[-1]
318
319
320
321
322
    if len(node.children) == 1:
        context.append(node.children[0])
        if condition(context):
            reduce_child(node)
        context.pop()
323
324


325
def is_named(context: List[Node]) -> bool:
Eckhart Arnold's avatar
Eckhart Arnold committed
326
    return bool(context[-1].parser.name)
327
328
329
330


def is_anonymous(context: List[Node]) -> bool:
    return not context[-1].parser.name
331
332
333


@transformation_factory(Callable)
334
335
336
def replace_or_reduce(context: List[Node], condition: Callable=is_named):
    """
    Replaces node by a single child, if condition is met on child,
337
338
    otherwise (i.e. if the child is anonymous) reduces the child.
    """
339
    node = context[-1]
340
341
342
343
344
345
346
    if len(node.children) == 1:
        context.append(node.children[0])
        if condition(context):
            replace_child(node)
        else:
            reduce_child(node)
        context.pop()
347
348
349


@transformation_factory
350
351
352
def replace_parser(context: List[Node], name: str):
    """
    Replaces the parser of a Node with a mock parser with the given
353
354
355
356
357
358
    name.

    Parameters:
        name(str): "NAME:PTYPE" of the surogate. The ptype is optional
        node(Node): The node where the parser shall be replaced
    """
359
    node = context[-1]
360
361
362
363
364
    name, ptype = (name.split(':') + [''])[:2]
    node.parser = MockParser(name, ptype)


@transformation_factory(Callable)
365
366
367
def flatten(context: List[Node], condition: Callable=is_anonymous, recursive: bool=True):
    """
    Flattens all children, that fulfil the given `condition`
368
369
370
371
372
373
374
375
376
377
378
379
    (default: all unnamed children). Flattening means that wherever a
    node has child nodes, the child nodes are inserted in place of the
    node.
     If the parameter `recursive` is `True` the same will recursively be
    done with the child-nodes, first. In other words, all leaves of
    this node and its child nodes are collected in-order as direct
    children of this node.
     Applying flatten recursively will result in these kinds of
    structural transformation:
        (1 (+ 2) (+ 3)     ->   (1 + 2 + 3)
        (1 (+ (2 + (3))))  ->   (1 + 2 + 3)
    """
380
    node = context[-1]
381
    if node.children:
Eckhart Arnold's avatar
Eckhart Arnold committed
382
        new_result = []     # type: List[Node]
383
        for child in node.children:
384
385
            context.append(child)
            if child.children and condition(context):
386
                if recursive:
387
                    flatten(context, condition, recursive)
388
389
390
                new_result.extend(child.children)
            else:
                new_result.append(child)
391
            context.pop()
392
393
394
        node.result = tuple(new_result)


395
396
397
def collapse(context: List[Node]):
    """
    Collapses all sub-nodes of a node by replacing them with the
398
    string representation of the node.
399
    """
400
    node = context[-1]
401
402
403
404
    node.result = str(node)


@transformation_factory
405
406
407
408
409
def merge_children(context: List[Node], tag_names: List[str]):
    """
    Joins all children next to each other and with particular tag-
    names into a single child node with a mock-parser with the name of
    the first tag-name in the list.
410
    """
Eckhart Arnold's avatar
Eckhart Arnold committed
411
    node = context[-1]
412
    result = []
413
    name, ptype = ('', tag_names[0]) if tag_names[0][:1] == ':' else (tag_names[0], '')
414
    if node.children:
415
        i = 0
416
417
418
419
420
421
422
423
424
425
426
        L = len(node.children)
        while i < L:
            while i < L and not node.children[i].tag_name in tag_names:
                result.append(node.children[i])
                i += 1
            k = i + 1
            while (k < L and node.children[k].tag_name in tag_names
                   and bool(node.children[i].children) == bool(node.children[k].children)):
                k += 1
            if i < L:
                result.append(Node(MockParser(name, ptype),
Eckhart Arnold's avatar
Eckhart Arnold committed
427
428
                                   reduce(lambda a, b: a + b,
                                          (node.children for node in node.children[i:k]))))
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
            i = k
        node.result = tuple(result)


# ------------------------------------------------
#
# destructive transformations:
#     - tree may be rearranged (flattened),
#     - order is preserved
#     - but (irrelevant) leaves may be dropped
#     - errors of dropped leaves will be lost
#
# ------------------------------------------------


@transformation_factory
445
def replace_content(context: List[Node], func: Callable):  # Callable[[Node], ResultType]
446
447
448
    """Replaces the content of the node. ``func`` takes the node
    as an argument an returns the mapped result.
    """
449
    node = context[-1]
450
451
452
    node.result = func(node.result)


453
def is_whitespace(context: List[Node]) -> bool:
454
455
    """Removes whitespace and comments defined with the
    ``@comment``-directive."""
456
    return context[-1].parser.ptype == WHITESPACE_PTYPE
457
458


459
460
def is_empty(context: List[Node]) -> bool:
    return not context[-1].result
461
462


463
464
def is_expendable(context: List[Node]) -> bool:
    return is_empty(context) or is_whitespace(context)
465
466


467
468
def is_token(context: List[Node], tokens: AbstractSet[str] = frozenset()) -> bool:
    node = context[-1]
469
470
471
    return node.parser.ptype == TOKEN_PTYPE and (not tokens or node.result in tokens)


472
def is_one_of(context: List[Node], tag_name_set: AbstractSet[str]) -> bool:
473
474
    """Returns true, if the node's tag_name is on of the
    given tag names."""
475
    return context[-1].tag_name in tag_name_set
476
477


478
def has_content(context: List[Node], regexp: str) -> bool:
479
    """Checks a node's content against a regular expression."""
480
    return bool(re.match(regexp, str(context[-1])))
481
482


483
@transformation_factory(Callable)
484
485
def apply_if(context: List[Node], transformation: Callable, condition: Callable):
    """Applies a transformation only if a certain condition is met."""
486
    node = context[-1]
487
    if condition(node):
488
        transformation(context)
489
490


491
@transformation_factory(slice)
492
def keep_children(context: List[Node], section: slice = slice(None)):
493
    """Keeps only child-nodes which fall into a slice of the result field."""
494
    node = context[-1]
495
    if node.children:
496
        node.result = node.children[section]
497
498
499


@transformation_factory(Callable)
500
def remove_children_if(context: List[Node], condition: Callable, section: slice = slice(None)):
501
502
503
504
505
506
507
508
    """Removes all children for which `condition()` returns `True`."""
    node = context[-1]
    if node.children:
        node.result = tuple(c for c in node.children if not condition(context + [c]))


@transformation_factory(Callable)
def remove_children(context: List[Node], condition: Callable, section: slice = slice(None)):
509
    """Removes all nodes from a slice of the result field if the function
510
    `condition(child_node)` evaluates to `True`."""
511
    node = context[-1]
512
    if node.children:
513
514
515
        c = node.children
        N = len(c)
        rng = range(*section.indices(N))
516
517
518
519
520
521
522
523
524
525
        node.result = tuple(c[i] for i in range(N)
                            if not i in rng or not condition(context + [c[i]]))
        # selection = []
        # for i in range(N):
        #     context.append(c[i])
        #     if not i in rng or not condition(context):
        #         selection.append(c[i])
        #     context.pop()
        # if len(selection) != c:
        #     node.result = tuple(selection)
526
527
528
529
530


remove_whitespace = remove_children_if(is_whitespace)  # partial(remove_children_if, condition=is_whitespace)
remove_empty = remove_children_if(is_empty)
remove_expendables = remove_children_if(is_expendable)  # partial(remove_children_if, condition=is_expendable)
531
532
533
534
535
remove_first = apply_if(keep_children(slice(1, None)), lambda nd: len(nd.children) > 1)
remove_last = apply_if(keep_children(slice(None, -1)), lambda nd: len(nd.children) > 1)
remove_brackets = apply_if(keep_children(slice(1, -1)), lambda nd: len(nd.children) >= 2)
remove_infix_operator = keep_children(slice(0, None, 2))
remove_single_child = apply_if(keep_children(slice(0)), lambda nd: len(nd.children) == 1)
536
537
538


@transformation_factory
539
def remove_tokens(context: List[Node], tokens: AbstractSet[str] = frozenset()):
540
541
542
    """Reomoves any among a particular set of tokens from the immediate
    descendants of a node. If ``tokens`` is the empty set, all tokens
    are removed."""
543
    remove_children_if(context, partial(is_token, tokens=tokens))
544
545
546


@transformation_factory
547
def remove_parser(context: List[Node], tag_names: AbstractSet[str]):
Eckhart Arnold's avatar
Eckhart Arnold committed
548
    """Removes children by tag name."""
549
    remove_children_if(context, partial(is_one_of, tag_name_set=tag_names))
550
551
552


@transformation_factory
553
def remove_content(context: List[Node], regexp: str):
554
    """Removes children depending on their string value."""
555
    remove_children_if(context, partial(has_content, regexp=regexp))
556
557
558
559


########################################################################
#
560
# AST semantic validation functions (EXPERIMENTAL!!!)
561
562
563
#
########################################################################

564
@transformation_factory(Callable)
Eckhart Arnold's avatar
Eckhart Arnold committed
565
def assert_condition(context: List[Node], condition: Callable, error_msg: str = ''):
566
    """Checks for `condition`; adds an error message if condition is not met."""
567
    node = context[-1]
568
    if not condition(context):
569
570
571
572
573
574
575
576
577
578
579
580
581
        if error_msg:
            node.add_error(error_msg % node.tag_name if error_msg.find("%s") > 0 else error_msg)
        else:
            cond_name = condition.__name__ if hasattr(condition, '__name__') \
                        else condition.__class__.__name__ if hasattr(condition, '__class__') \
                        else '<unknown>'
            node.add_error("transform.assert_condition: Failed to meet condition " + cond_name)


assert_has_children = assert_condition(lambda nd: nd.children, 'Element "%s" has no children')


@transformation_factory
582
def assert_content(context: List[Node], regexp: str):
583
    node = context[-1]
584
    if not has_content(context, regexp):
585
586
587
        node.add_error('Element "%s" violates %s on %s' %
                       (node.parser.name, str(regexp), str(node)))

588
589

@transformation_factory
590
def require(context: List[Node], child_tags: AbstractSet[str]):
591
    node = context[-1]
592
593
594
595
596
597
598
    for child in node.children:
        if child.tag_name not in child_tags:
            node.add_error('Element "%s" is not allowed inside "%s".' %
                           (child.parser.name, node.parser.name))


@transformation_factory
599
def forbid(context: List[Node], child_tags: AbstractSet[str]):
600
    node = context[-1]
601
602
603
604
    for child in node.children:
        if child.tag_name in child_tags:
            node.add_error('Element "%s" cannot be nested inside "%s".' %
                           (child.parser.name, node.parser.name))