transform.py 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
"""transformation.py - transformation functions for converting the
                       concrete into the abstract syntax tree

Copyright 2016  by Eckhart Arnold (arnold@badw.de)
                Bavarian Academy of Sciences an Humanities (badw.de)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.  See the License for the specific language governing
permissions and limitations under the License.
"""

import inspect
from functools import partial, reduce, singledispatch

23
from DHParser.syntaxtree import Node, WHITESPACE_PTYPE, TOKEN_PTYPE, MockParser
24

25 26 27 28
from DHParser.toolkit import expand_table, smart_list, re, typing

from typing import AbstractSet, Any, ByteString, Callable, cast, Container, Dict, \
    Iterator, List, NamedTuple, Sequence, Union, Text, Tuple
29

30 31 32 33 34
__all__ = ('TransformationDict',
           'TransformationProc',
           'ConditionFunc',
           'KeyFunc',
           'transformation_factory',
35 36 37
           'key_parser_name',
           'key_tag_name',
           'traverse',
38
           'is_named',
39
           'replace_by_single_child',
Eckhart Arnold's avatar
Eckhart Arnold committed
40
           'reduce_single_child',
41
           'replace_or_reduce',
42 43
           'replace_parser',
           'collapse',
44
           'merge_children',
45 46
           'replace_content',
           'apply_if',
47
           'traverse_locally',
48
           'is_anonymous',
49 50 51 52
           'is_whitespace',
           'is_empty',
           'is_expendable',
           'is_token',
53
           'is_one_of',
54
           'has_content',
55 56 57 58 59 60 61 62
           'lstrip',
           'rstrip',
           'strip',
           'keep_children',
           'keep_children_if',
           'keep_tokens',
           'keep_nodes',
           'keep_content',
63
           'remove_children_if',
eckhart's avatar
eckhart committed
64
           'remove_nodes',
65 66 67 68 69
           'remove_content',
           'remove_first',
           'remove_last',
           'remove_whitespace',
           'remove_empty',
di68kap's avatar
di68kap committed
70
           'remove_anonymous_empty',
71 72
           'remove_expendables',
           'remove_brackets',
73 74
           'remove_infix_operator',
           'remove_single_child',
75 76 77 78
           'remove_tokens',
           'flatten',
           'forbid',
           'require',
79 80
           'assert_content',
           'assert_condition',
eckhart's avatar
eckhart committed
81
           'assert_has_children')
82 83


84
TransformationProc = Callable[[List[Node]], None]
Eckhart Arnold's avatar
Eckhart Arnold committed
85 86
TransformationDict = Dict[str, Sequence[Callable]]
ProcessingTableType = Dict[str, Union[Sequence[Callable], TransformationDict]]
87 88
ConditionFunc = Callable  # Callable[[List[Node]], bool]
KeyFunc = Callable[[Node], str]
eckhart's avatar
eckhart committed
89
CriteriaType = Union[int, str, Callable]
90 91


92
def transformation_factory(t1=None, t2=None, t3=None, t4=None, t5=None):
93
    """Creates factory functions from transformation-functions that
94
    dispatch on the first parameter after the context parameter.
95 96 97 98

    Decorating a transformation-function that has more than merely the
    ``node``-parameter with ``transformation_factory`` creates a
    function with the same name, which returns a partial-function that
99
    takes just the context-parameter.
100 101 102 103 104 105 106 107 108 109

    Additionally, there is some some syntactic sugar for
    transformation-functions that receive a collection as their second
    parameter and do not have any further parameters. In this case a
    list of parameters passed to the factory function will be converted
    into a collection.

    Main benefit is readability of processing tables.

    Usage:
eckhart's avatar
eckhart committed
110
        @transformation_factory(AbstractSet[str])
111
        def remove_tokens(context, tokens):
112 113 114
            ...
      or, alternatively:
        @transformation_factory
115
        def remove_tokens(context, tokens: AbstractSet[str]):
116 117 118 119 120 121
            ...

    Example:
        trans_table = { 'expression': remove_tokens('+', '-') }
      instead of:
        trans_table = { 'expression': partial(remove_tokens, tokens={'+', '-'}) }
122 123

    Parameters:
124
        t1:  type of the second argument of the transformation function,
125 126
            only necessary if the transformation functions' parameter list
            does not have type annotations.
127 128 129 130 131 132 133
    """

    def decorator(f):
        sig = inspect.signature(f)
        params = list(sig.parameters.values())[1:]
        if len(params) == 0:
            return f  # '@transformer' not needed w/o free parameters
134
        assert t1 or params[0].annotation != params[0].empty, \
135 136
            "No type information on second parameter found! Please, use type " \
            "annotation or provide the type information via transfomer-decorator."
137
        p1type = t1 or params[0].annotation
138
        f = singledispatch(f)
eckhart's avatar
eckhart committed
139 140 141 142 143 144 145 146 147 148 149 150
        try:
            if len(params) == 1 and issubclass(p1type, Container) \
                    and not issubclass(p1type, Text) and not issubclass(p1type, ByteString):
                def gen_special(*args):
                    c = set(args) if issubclass(p1type, AbstractSet) else \
                        list(args) if issubclass(p1type, Sequence) else args
                    d = {params[0].name: c}
                    return partial(f, **d)

                f.register(p1type.__args__[0], gen_special)
        except AttributeError:
            pass  # Union Type does not allow subclassing, but is not needed here
151 152 153 154 155 156

        def gen_partial(*args, **kwargs):
            d = {p.name: arg for p, arg in zip(params, args)}
            d.update(kwargs)
            return partial(f, **d)

157 158 159 160 161
        for t in (p1type, t2, t3, t4, t5):
            if t:
                f.register(t, gen_partial)
            else:
                break
162 163
        return f

164
    if isinstance(t1, type(lambda: 1)):
165 166 167
        # Provide for the case that transformation_factory has been
        # written as plain decorator and not as a function call that
        # returns the decorator proper.
168 169
        func = t1
        t1 = None
170 171 172 173 174
        return decorator(func)
    else:
        return decorator


175
def key_parser_name(node: Node) -> str:
176 177 178
    return node.parser.name


179
def key_tag_name(node: Node) -> str:
180 181 182
    return node.tag_name


183
def traverse(root_node: Node,
Eckhart Arnold's avatar
Eckhart Arnold committed
184
             processing_table: ProcessingTableType,
185 186 187
             key_func: KeyFunc=key_tag_name) -> None:
    """
    Traverses the snytax tree starting with the given ``node`` depth
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    first and applies the sequences of callback-functions registered
    in the ``calltable``-dictionary.

    The most important use case is the transformation of a concrete
    syntax tree into an abstract tree (AST). But it is also imaginable
    to employ tree-traversal for the semantic analysis of the AST.

    In order to assign sequences of callback-functions to nodes, a
    dictionary ("processing table") is used. The keys usually represent
    tag names, but any other key function is possible. There exist
    three special keys:
        '+': always called (before any other processing function)
        '*': called for those nodes for which no (other) processing
             function appears in the table
        '~': always called (after any other processing function)

    Args:
        root_node (Node): The root-node of the syntax tree to be traversed
        processing_table (dict): node key -> sequence of functions that
            will be applied to matching nodes in order. This dictionary
208 209
            is interpreted as a `compact_table`. See
            `toolkit.expand_table` or ``EBNFCompiler.EBNFTransTable`
210 211 212 213
        key_func (function): A mapping key_func(node) -> keystr. The default
            key_func yields node.parser.name.

    Example:
214 215
        table = { "term": [replace_by_single_child, flatten],
            "factor, flowmarker, retrieveop": replace_by_single_child }
216 217
        traverse(node, table)
    """
218 219 220 221 222 223
    # Is this optimazation really needed?
    if '__cache__' in processing_table:
        # assume that processing table has already been expanded
        table = processing_table
        cache = processing_table['__cache__']
    else:
224 225
        # normalize processing_table entries by turning single values
        # into lists with a single value
226 227
        table = {name: cast(Sequence[Callable], smart_list(call))
                 for name, call in list(processing_table.items())}
228
        table = expand_table(table)
Eckhart Arnold's avatar
Eckhart Arnold committed
229
        cache = table.setdefault('__cache__', cast(TransformationDict, dict()))
230 231
        # change processing table in place, so its already expanded and cache filled next time
        processing_table.clear()
232 233 234 235 236 237
        processing_table.update(table)

    # assert '__cache__' in processing_table
    # # Code without optimization
    # table = {name: smart_list(call) for name, call in list(processing_table.items())}
    # table = expand_table(table)
Eckhart Arnold's avatar
Eckhart Arnold committed
238
    # cache = {}  # type: Dict[str, List[Callable]]
239

240 241
    def traverse_recursive(context):
        node = context[-1]
242 243
        if node.children:
            for child in node.result:
244 245
                context.append(child)
                traverse_recursive(context)  # depth first
246
                node.error_flag = max(node.error_flag, child.error_flag)  # propagate error flag
247
                context.pop()
248 249

        key = key_func(node)
250 251 252
        try:
            sequence = cache[key]
        except KeyError:
253 254 255 256 257 258 259 260 261 262
            sequence = table.get('+', []) + \
                       table.get(key, table.get('*', [])) + \
                       table.get('~', [])
            # '+' always called (before any other processing function)
            # '*' called for those nodes for which no (other) processing function
            #     appears in the table
            # '~' always called (after any other processing function)
            cache[key] = sequence

        for call in sequence:
263
            call(context)
264

265
    traverse_recursive([root_node])
266 267
    # assert processing_table['__cache__']

268

269
#######################################################################
270
#
271 272
# meta transformations, i.e. transformations that call other
# transformations
273
#
274
#######################################################################
275 276


277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
@transformation_factory(Dict)
def traverse_locally(context: List[Node],
                     processing_table: Dict,            # actually: ProcessingTableType
                     key_func: Callable=key_tag_name):  # actually: KeyFunc
    """Transforms the syntax tree starting from the last node in the context
    according to the given processing table. The purpose of this function is
    to apply certain transformations locally, i.e. only for those nodes that
    have the last node in the context as their parent node.
    """
    traverse(context[-1], processing_table, key_func)


# @transformation_factory(List[Callable])
# def apply_to_child(context: List[Node], transformations: List[Callable], condition: Callable):
#     """Applies a list of transformations to those children that meet a specifc condition."""
#     node = context[-1]
#     for child in node.children:
#         context.append(child)
#         if condition(context):
#             for transform in transformations:
#                 transform(context)
#         context.pop()


@transformation_factory(Callable)
def apply_if(context: List[Node], transformation: Callable, condition: Callable):
    """Applies a transformation only if a certain condition is met."""
    if condition(context):
        transformation(context)


#######################################################################
#
# conditionals that determine whether the context (or the last node in
# the context for that matter) fulfill a specific condition.
# ---------------------------------------------------------------------
#
# The context of a node is understood as a list of all parent nodes
# leading up to and including the node itself. If represented as list,
# the last element of the list is the node itself.
#
#######################################################################


def is_single_child(context: List[Node]) -> bool:
    return len(context[-2].children) == 1


def is_named(context: List[Node]) -> bool:
    return bool(context[-1].parser.name)


def is_anonymous(context: List[Node]) -> bool:
    return not context[-1].parser.name


def is_whitespace(context: List[Node]) -> bool:
    """Removes whitespace and comments defined with the
    ``@comment``-directive."""
    return context[-1].parser.ptype == WHITESPACE_PTYPE


def is_empty(context: List[Node]) -> bool:
    return not context[-1].result


def is_expendable(context: List[Node]) -> bool:
    return is_empty(context) or is_whitespace(context)


@transformation_factory(AbstractSet[str])
def is_token(context: List[Node], tokens: AbstractSet[str] = frozenset()) -> bool:
    """Checks whether the last node in the context has `ptype == TOKEN_PTYPE`
    and it's content matches one of the given tokens. Leading and trailing
    whitespace-tokens will be ignored. In case an empty set of tokens is passed,
    any token is a match. If only ":" is given all anonymous tokens but no other
    tokens are a match.
    """
    def stripped(nd: Node) -> str:
        # assert node.parser.ptype == TOKEN_PTYPE
        if nd.children:
            i, k = 0, len(nd.children)
            while i < len(nd.children) and nd.children[i].parser.ptype == WHITESPACE_PTYPE:
                i += 1
            while k > 0 and nd.children[k-1].parser.ptype == WHITESPACE_PTYPE:
                k -= 1
            return "".join(child.content for child in node.children[i:k])
        return nd.content
    node = context[-1]
    return (node.parser.ptype == TOKEN_PTYPE
            and ((not tokens or stripped(node) in tokens)
                 or (not node.parser.name and len(tokens) == 1 and ":" in tokens)))


@transformation_factory(AbstractSet[str])
def is_one_of(context: List[Node], tag_name_set: AbstractSet[str]) -> bool:
    """Returns true, if the node's tag_name is one of the given tag names."""
    return context[-1].tag_name in tag_name_set


@transformation_factory(str)
def has_content(context: List[Node], regexp: str) -> bool:
    """Checks a node's content against a regular expression."""
    return bool(re.match(regexp, context[-1].content))


@transformation_factory(AbstractSet[str])
def has_parent(context: List[Node], tag_name_set: AbstractSet[str]) -> bool:
    """Checks whether a node with one of the given tag names appears somewhere
     in the context before the last node in the context."""
    for i in range(2, len(context)):
        if context[-i].tag_name in tag_name_set:
            return True
    return False


#######################################################################
#
# utility functions (private)
#
#######################################################################


def _replace_by(node: Node, child: Node):
401 402 403 404 405 406 407 408
    if not child.parser.name:
        child.parser = MockParser(node.parser.name, child.parser.ptype)
        # parser names must not be overwritten, else: child.parser.name = node.parser.name
    node.parser = child.parser
    node._errors.extend(child._errors)
    node.result = child.result


409
def _reduce_child(node: Node, child: Node):
410 411 412 413
    node._errors.extend(child._errors)
    node.result = child.result


414
def _pick_child(context: List[Node], criteria: CriteriaType):
eckhart's avatar
eckhart committed
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    """Returns the first child that meets the criteria."""
    if isinstance(criteria, int):
        try:
            return context[-1].children[criteria]
        except IndexError:
            return None
    elif isinstance(criteria, str):
        for child in context[-1].children:
            if child.tag_name == criteria:
                return child
        return None
    else:  # assume criteria has type ConditionFunc
        for child in context[-1].children:
            context.append(child)
            evaluation = criteria(context)
            context.pop()
            if evaluation:
                return child
        return None
434 435


436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
#######################################################################
#
# rearranging transformations
#
# - tree may be rearranged (e.g.flattened)
# - nodes that are not leaves may be dropped
# - order is preserved
# - leave content is preserved (though not necessarily the leaves
#   themselves)
#
#######################################################################


# @transformation_factory(int, str, Callable)
# def replace_by_child(context: List[Node], criteria: CriteriaType=is_single_child):
#     """
#     Replaces a node by the first of its immediate descendants
#     that meets the `criteria`. The criteria can either be the
#     index of the child (counting from zero), or the tag name or
#     a boolean-valued function on the context of the child.
#     If no child matching the criteria is found, the node will
#     not be replaced.
#     With the default value for `criteria` the same semantics is
#     the same that of `replace_by_single_child`.
#     """
#     child = _pick_child(context, criteria)
#     if child:
#         _replace_by(context[-1], child)
#
#
# @transformation_factory(int, str, Callable)
# def content_from_child(context: List[Node], criteria: CriteriaType = is_single_child):
#     """
#     Reduces a node, by transferring the result of the first of its
#     immediate descendants that meets the `criteria` to this node,
#     but keeping this node's parser entry. The criteria can either
#     be the index of the child (counting from zero), or the tag
#     name or a boolean-valued function on the context of the child.
#     If no child matching the criteria is found, the node will
#     not be replaced.
#     With the default value for `criteria` this has the same semantics
#     as `content_from_single_child`.
#     """
#     child = _pick_child(context, criteria)
#     if child:
#         _reduce_child(context[-1], child)
482 483


484 485
def replace_by_single_child(context: List[Node]):
    """
486 487 488
    Removes single branch node, replacing it by its immediate descendant.
    Replacement only takes place, if the last node in the context has
    exactly one child.
489 490 491
    """
    node = context[-1]
    if len(node.children) == 1:
492
        _replace_by(node, node.children[0])
493 494


Eckhart Arnold's avatar
Eckhart Arnold committed
495
def reduce_single_child(context: List[Node]):
496
    """
497
    Reduces a single branch node by transferring the result of its
498
    immediate descendant to this node, but keeping this node's parser entry.
499 500
    Reduction only takes place if the last node in the context has
    exactly one child.
501 502 503
    """
    node = context[-1]
    if len(node.children) == 1:
504
        _reduce_child(node, node.children[0])
505 506 507


@transformation_factory(Callable)
508 509 510
def replace_or_reduce(context: List[Node], condition: Callable=is_named):
    """
    Replaces node by a single child, if condition is met on child,
511 512
    otherwise (i.e. if the child is anonymous) reduces the child.
    """
513
    node = context[-1]
514
    if len(node.children) == 1:
di68kap's avatar
di68kap committed
515
        child = node.children[0]
516
        if condition(context):
517
            _replace_by(node, child)
518
        else:
519
            _reduce_child(node, child)
520 521 522


@transformation_factory
523 524 525
def replace_parser(context: List[Node], name: str):
    """
    Replaces the parser of a Node with a mock parser with the given
526 527 528
    name.

    Parameters:
529 530
        context: the context where the parser shall be replaced
        name: "NAME:PTYPE" of the surogate. The ptype is optional
531
    """
532
    node = context[-1]
533 534 535 536 537
    name, ptype = (name.split(':') + [''])[:2]
    node.parser = MockParser(name, ptype)


@transformation_factory(Callable)
538 539 540
def flatten(context: List[Node], condition: Callable=is_anonymous, recursive: bool=True):
    """
    Flattens all children, that fulfil the given `condition`
541 542 543 544 545 546 547 548 549 550 551 552
    (default: all unnamed children). Flattening means that wherever a
    node has child nodes, the child nodes are inserted in place of the
    node.
     If the parameter `recursive` is `True` the same will recursively be
    done with the child-nodes, first. In other words, all leaves of
    this node and its child nodes are collected in-order as direct
    children of this node.
     Applying flatten recursively will result in these kinds of
    structural transformation:
        (1 (+ 2) (+ 3)     ->   (1 + 2 + 3)
        (1 (+ (2 + (3))))  ->   (1 + 2 + 3)
    """
553
    node = context[-1]
554
    if node.children:
Eckhart Arnold's avatar
Eckhart Arnold committed
555
        new_result = []     # type: List[Node]
556
        for child in node.children:
557 558
            context.append(child)
            if child.children and condition(context):
559
                if recursive:
560
                    flatten(context, condition, recursive)
561 562 563
                new_result.extend(child.children)
            else:
                new_result.append(child)
564
            context.pop()
565 566 567
        node.result = tuple(new_result)


568 569 570
def collapse(context: List[Node]):
    """
    Collapses all sub-nodes of a node by replacing them with the
571
    string representation of the node.
572
    """
573
    node = context[-1]
574
    node.result = node.content
575 576 577


@transformation_factory
578 579
def merge_children(context: List[Node], tag_names: List[str]):
    """
580 581 582
    Joins all children next to each other and with particular tag-names
    into a single child node with a mock-parser with the name of the
    first tag-name in the list.
583
    """
Eckhart Arnold's avatar
Eckhart Arnold committed
584
    node = context[-1]
585
    result = []
586
    name, ptype = ('', tag_names[0]) if tag_names[0][:1] == ':' else (tag_names[0], '')
587
    if node.children:
588
        i = 0
589 590 591 592 593 594 595 596 597 598 599
        L = len(node.children)
        while i < L:
            while i < L and not node.children[i].tag_name in tag_names:
                result.append(node.children[i])
                i += 1
            k = i + 1
            while (k < L and node.children[k].tag_name in tag_names
                   and bool(node.children[i].children) == bool(node.children[k].children)):
                k += 1
            if i < L:
                result.append(Node(MockParser(name, ptype),
Eckhart Arnold's avatar
Eckhart Arnold committed
600 601
                                   reduce(lambda a, b: a + b,
                                          (node.children for node in node.children[i:k]))))
602 603 604 605 606
            i = k
        node.result = tuple(result)


@transformation_factory
607
def replace_content(context: List[Node], func: Callable):  # Callable[[Node], ResultType]
608 609 610
    """Replaces the content of the node. ``func`` takes the node
    as an argument an returns the mapped result.
    """
611
    node = context[-1]
612 613 614
    node.result = func(node.result)


615 616 617 618 619 620 621 622 623
#######################################################################
#
# destructive transformations:
#
# - leaves may be dropped (e.g. if deemed irrelevant)
# - errors of dropped leaves will be lost
# - no promise that order will be preserved
#
#######################################################################
624 625


626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
@transformation_factory(Callable)
def lstrip(context: List[Node], condition: Callable = is_expendable):
    """Recursively removes all leading child-nodes that fulfill a given condition."""
    node = context[-1]
    i = 1
    while i > 0 and node.children:
        lstrip(context + [node.children[0]], condition)
        i, L = 0, len(node.children)
        while i < L and condition(context + [node.children[i]]):
            i += 1
        if i > 0:
            node.result = node.children[i:]


@transformation_factory(Callable)
def rstrip(context: List[Node], condition: Callable = is_expendable):
    """Recursively removes all leading nodes that fulfill a given condition."""
    node = context[-1]
    i, L = 0, len(node.children)
    while i < L and node.children:
        rstrip(context + [node.children[-1]], condition)
        L = len(node.children)
        i = L
        while i > 0 and condition(context + [node.children[i-1]]):
            i -= 1
        if i < L:
            node.result = node.children[:i]


@transformation_factory(Callable)
eckhart's avatar
eckhart committed
656
def strip(context: List[Node], condition: Callable = is_expendable):
657 658 659 660 661
    """Removes leading and trailing child-nodes that fulfill a given condition."""
    lstrip(context, condition)
    rstrip(context, condition)


662
@transformation_factory(slice)
663
def keep_children(context: List[Node], section: slice = slice(None)):
664
    """Keeps only child-nodes which fall into a slice of the result field."""
665
    node = context[-1]
666
    if node.children:
667
        node.result = node.children[section]
668 669 670


@transformation_factory(Callable)
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
def keep_children_if(context: List[Node], condition: Callable):
    """Removes all children for which `condition()` returns `True`."""
    node = context[-1]
    if node.children:
        node.result = tuple(c for c in node.children if condition(context + [c]))


@transformation_factory
def keep_tokens(context: List[Node], tokens: AbstractSet[str] = frozenset()):
    """Removes any among a particular set of tokens from the immediate
    descendants of a node. If ``tokens`` is the empty set, all tokens
    are removed."""
    keep_children_if(context, partial(is_token, tokens=tokens))


@transformation_factory
def keep_nodes(context: List[Node], tag_names: AbstractSet[str]):
    """Removes children by tag name."""
    keep_children_if(context, partial(is_one_of, tag_name_set=tag_names))


@transformation_factory
def keep_content(context: List[Node], regexp: str):
    """Removes children depending on their string value."""
    keep_children_if(context, partial(has_content, regexp=regexp))


@transformation_factory(Callable)
def remove_children_if(context: List[Node], condition: Callable):
700 701 702 703 704 705
    """Removes all children for which `condition()` returns `True`."""
    node = context[-1]
    if node.children:
        node.result = tuple(c for c in node.children if not condition(context + [c]))


eckhart's avatar
eckhart committed
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
# @transformation_factory(Callable)
# def remove_children(context: List[Node],
#                     condition: Callable = TRUE_CONDITION,
#                     section: slice = slice(None)):
#     """Removes all nodes from a slice of the result field if the function
#     `condition(child_node)` evaluates to `True`."""
#     node = context[-1]
#     if node.children:
#         c = node.children
#         N = len(c)
#         rng = range(*section.indices(N))
#         node.result = tuple(c[i] for i in range(N)
#                             if i not in rng or not condition(context + [c[i]]))
#         # selection = []
#         # for i in range(N):
#         #     context.append(c[i])
#         #     if not i in rng or not condition(context):
#         #         selection.append(c[i])
#         #     context.pop()
#         # if len(selection) != c:
#         #     node.result = tuple(selection)
727 728 729 730


remove_whitespace = remove_children_if(is_whitespace)  # partial(remove_children_if, condition=is_whitespace)
remove_empty = remove_children_if(is_empty)
di68kap's avatar
di68kap committed
731
remove_anonymous_empty = remove_children_if(lambda ctx: is_empty(ctx) and is_anonymous(ctx))
732
remove_expendables = remove_children_if(is_expendable)  # partial(remove_children_if, condition=is_expendable)
733
remove_anonymous_expendables = remove_children_if(lambda ctx: is_anonymous(ctx) and is_expendable(ctx))
734 735 736
remove_first = apply_if(keep_children(slice(1, None)), lambda ctx: len(ctx[-1].children) > 1)
remove_last = apply_if(keep_children(slice(None, -1)), lambda ctx: len(ctx[-1].children) > 1)
remove_brackets = apply_if(keep_children(slice(1, -1)), lambda ctx: len(ctx[-1].children) >= 2)
737
remove_infix_operator = keep_children(slice(0, None, 2))
738
remove_single_child = apply_if(keep_children(slice(0)), lambda ctx: len(ctx[-1].children) == 1)
739 740 741


@transformation_factory
742
def remove_tokens(context: List[Node], tokens: AbstractSet[str] = frozenset()):
743
    """Removes any among a particular set of tokens from the immediate
744 745
    descendants of a node. If ``tokens`` is the empty set, all tokens
    are removed."""
746
    remove_children_if(context, partial(is_token, tokens=tokens))
747 748 749


@transformation_factory
eckhart's avatar
eckhart committed
750
def remove_nodes(context: List[Node], tag_names: AbstractSet[str]):
Eckhart Arnold's avatar
Eckhart Arnold committed
751
    """Removes children by tag name."""
752
    remove_children_if(context, partial(is_one_of, tag_name_set=tag_names))
753 754 755


@transformation_factory
756
def remove_content(context: List[Node], regexp: str):
757
    """Removes children depending on their string value."""
758
    remove_children_if(context, partial(has_content, regexp=regexp))
759 760 761 762


########################################################################
#
763
# AST semantic validation functions (EXPERIMENTAL!!!)
764 765 766
#
########################################################################

767
@transformation_factory(Callable)
Eckhart Arnold's avatar
Eckhart Arnold committed
768
def assert_condition(context: List[Node], condition: Callable, error_msg: str = ''):
769
    """Checks for `condition`; adds an error message if condition is not met."""
770
    node = context[-1]
771
    if not condition(context):
772 773 774 775 776 777 778 779 780 781 782 783 784
        if error_msg:
            node.add_error(error_msg % node.tag_name if error_msg.find("%s") > 0 else error_msg)
        else:
            cond_name = condition.__name__ if hasattr(condition, '__name__') \
                        else condition.__class__.__name__ if hasattr(condition, '__class__') \
                        else '<unknown>'
            node.add_error("transform.assert_condition: Failed to meet condition " + cond_name)


assert_has_children = assert_condition(lambda nd: nd.children, 'Element "%s" has no children')


@transformation_factory
785
def assert_content(context: List[Node], regexp: str):
786
    node = context[-1]
787
    if not has_content(context, regexp):
788
        node.add_error('Element "%s" violates %s on %s' %
789
                       (node.parser.name, str(regexp), node.content))
790

791 792

@transformation_factory
793
def require(context: List[Node], child_tags: AbstractSet[str]):
794
    node = context[-1]
795 796 797 798 799 800 801
    for child in node.children:
        if child.tag_name not in child_tags:
            node.add_error('Element "%s" is not allowed inside "%s".' %
                           (child.parser.name, node.parser.name))


@transformation_factory
802
def forbid(context: List[Node], child_tags: AbstractSet[str]):
803
    node = context[-1]
804 805 806 807
    for child in node.children:
        if child.tag_name in child_tags:
            node.add_error('Element "%s" cannot be nested inside "%s".' %
                           (child.parser.name, node.parser.name))