# syntaxtree.py - syntax tree classes for DHParser # # Copyright 2016 by Eckhart Arnold (arnold@badw.de) # Bavarian Academy of Sciences an Humanities (badw.de) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. """ Module ``syntaxtree`` defines the ``Node``-class for syntax trees as well as an abstract base class for parser-objects. The latter is defined here, because node-objects refer to parser-objects. All concrete parser classes are defined in the ``parse`` module. """ import collections.abc from collections import OrderedDict import copy from DHParser.error import Error, linebreaks, line_col from DHParser.stringview import StringView from DHParser.toolkit import re, typing from typing import Callable, cast, Iterator, List, AbstractSet, Set, Union, Tuple, Optional __all__ = ('ParserBase', 'WHITESPACE_PTYPE', 'TOKEN_PTYPE', 'MockParser', 'ZombieParser', 'ZOMBIE_PARSER', 'ZOMBIE_NODE', 'Node', 'RootNode', 'parse_sxpr', 'flatten_sxpr') ####################################################################### # # parser base and mock parsers # ####################################################################### class ParserBase: """ ParserBase is the base class for all real and mock parser classes. It is defined here, because Node objects require a parser object for instantiation. """ def __init__(self, name=''): # , pbases=frozenset()): self._name = name # type: str self._ptype = ':' + self.__class__.__name__ # type: str def __repr__(self): return self.name + self.ptype def __str__(self): return self.name + (' = ' if self.name else '') + repr(self) def __call__(self, text: StringView) -> Tuple[Optional['Node'], StringView]: return None, text @property def name(self): """Returns the name of the parser or the empty string '' for unnamed parsers.""" return self._name @property def ptype(self) -> str: """Returns the type of the parser. By default this is the parser's class name preceded by a colon, e.g. ':ZeroOrMore'.""" return self._ptype @property def repr(self) -> str: """Returns the parser's name if it has a name and repr()""" return self.name if self.name else repr(self) def reset(self): """Resets any parser variables. (Should be overridden.)""" pass def grammar(self) -> Optional[object]: """Returns the Grammar object to which the parser belongs. If not yet connected to any Grammar object, None is returned.""" return None def apply(self, func: Callable) -> bool: """Applies the function `func` to the parser. Returns False, if - for whatever reason - the functions has not been applied, True otherwise.""" return False WHITESPACE_PTYPE = ':Whitespace' TOKEN_PTYPE = ':Token' class MockParser(ParserBase): """ MockParser objects can be used to reconstruct syntax trees from a serialized form like S-expressions or XML. Mock objects can mimic different parser types by assigning them a ptype on initialization. Mock objects should not be used for anything other than syntax tree (re-)construction. In all other cases where a parser object substitute is needed, chose the singleton ZOMBIE_PARSER. """ def __init__(self, name='', ptype=''): # , pbases=frozenset()): assert not ptype or ptype[0] == ':' super().__init__(name) self._ptype = ptype or ':' + self.__class__.__name__ class ZombieParser(MockParser): """ Serves as a substitute for a Parser instance. ``ZombieParser`` is the class of the singelton object ``ZOMBIE_PARSER``. The ``ZOMBIE_PARSER`` has a name and can be called, but it never matches. It serves as a substitute where only these (or one of these properties) is needed, but no real Parser- object is instantiated. """ alive = False def __init__(self): super(ZombieParser, self).__init__("__ZOMBIE__") assert not self.__class__.alive, "There can be only one!" assert self.__class__ == ZombieParser, "No derivatives, please!" self.__class__.alive = True def __copy__(self): return self def __deepcopy__(self, memo): return self def __call__(self, text): """Better call Saul ;-)""" return None, text ZOMBIE_PARSER = ZombieParser() ####################################################################### # # syntaxtree nodes # ####################################################################### ChildrenType = Tuple['Node', ...] NoChildren = cast(ChildrenType, ()) # type: ChildrenType StrictResultType = Union[ChildrenType, StringView, str] ResultType = Union[ChildrenType, 'Node', StringView, str, None] def flatten_sxpr(sxpr: str) -> str: """Returns S-expression ``sxpr`` as a one-liner without unnecessary whitespace. Example: >>> flatten_sxpr('(a\\n (b\\n c\\n )\\n)\\n') '(a (b c))' """ return re.sub(r'\s(?=\))', '', re.sub(r'\s+', ' ', sxpr)).strip() class Node(collections.abc.Sized): """ Represents a node in the concrete or abstract syntax tree. Attributes: tag_name (str): The name of the node, which is either its parser's name or, if that is empty, the parser's class name result (str or tuple): The result of the parser which generated this node, which can be either a string or a tuple of child nodes. children (tuple): The tuple of child nodes or an empty tuple if there are no child nodes. READ ONLY! content (str): Yields the contents of the tree as string. The difference to ``str(node)`` is that ``node.content`` does not add the error messages to the returned string. parser (Parser): The parser which generated this node. WARNING: In case you use mock syntax trees for testing or parser replacement during the AST-transformation: DO NOT rely on this being a real parser object in any phase after parsing (i.e. AST-transformation and compiling), for example by calling ``isinstance(node.parer, ...)``. len (int): The full length of the node's string result if the node is a leaf node or, otherwise, the concatenated string result's of its descendants. The figure always represents the length before AST-transformation and will never change through AST-transformation. READ ONLY! pos (int): the position of the node within the parsed text. The value of ``pos`` is -1 meaning invalid by default. Setting this value will set the positions of all child nodes relative to this value. To set the pos values of all nodes in a syntax tree, the pos value of the root node should be set to 0 right after parsing. Other than that, this value should be considered READ ONLY. At any rate, it should only be reassigned during the parsing stage and never during or after the AST-transformation. errors (list): A list of all errors that occured on this node. attributes (dict): An optional dictionary of XML-attributes. This dictionary is created lazily upon first usage. The attributes will only be shown in the XML-Representation, not in the S-Expression-output. """ __slots__ = ['_result', 'children', '_len', '_pos', 'parser', 'errors', '_xml_attr', '_content'] def __init__(self, parser, result: ResultType, leafhint: bool = False) -> None: """ Initializes the ``Node``-object with the ``Parser``-Instance that generated the node and the parser's result. """ self.errors = [] # type: List[Error] self._pos = -1 # type: int # Assignment to self.result initializes the attributes _result, children and _len # The following if-clause is merely an optimization, i.e. a fast-path for leaf-Nodes if leafhint: self._result = result # type: StrictResultType self._content = None # type: Optional[str] self.children = NoChildren # type: ChildrenType self._len = -1 # type: int # lazy evaluation else: self.result = result self.parser = parser or ZOMBIE_PARSER def __str__(self): s = "".join(str(child) for child in self.children) if self.children else self.content if self.errors: return ' <<< Error on "%s" | %s >>> ' % \ (s, '; '.join(e.message for e in self.errors)) return s def __repr__(self): mpargs = {'name': self.parser.name, 'ptype': self.parser.ptype} parg = "MockParser({name}, {ptype})".format(**mpargs) rarg = str(self) if not self.children else \ "(" + ", ".join(repr(child) for child in self.children) + ")" return "Node(%s, %s)" % (parg, rarg) def __len__(self): if self._len < 0: self._len = sum(len(child) for child in self.children) \ if self.children else len(self._result) return self._len def __bool__(self): # A node that is not None is always True, even if it's empty return True def __eq__(self, other): """ Equality of nodes: Two nodes are considered as equal, if their tag name is the same and if their results are equal. """ return self.tag_name == other.tag_name and self.result == other.result def __hash__(self): return hash(self.tag_name) def __deepcopy__(self, memodict={}): result = copy.deepcopy(self.result) other = Node(self.parser, result) other._pos = self._pos return other def __getitem__(self, index_or_tagname: Union[int, str]) -> Union['Node', Iterator['Node']]: """ Returns the child node with the given index if ``index_or_tagname`` is an integer or the first child node with the given tag name. Examples:: >>> tree = parse_sxpr('(a (b "X") (X (c "d")) (e (X "F")))') >>> flatten_sxpr(tree[0].as_sxpr()) '(b "X")' >>> flatten_sxpr(tree["X"].as_sxpr()) '(X (c "d"))' Args: index_or_tagname(str): Either an index of a child node or a tag name. Returns: Node: All nodes which have a given tag name. """ if self.children: if isinstance(index_or_tagname, int): return self.children[index_or_tagname] else: for child in self.children: if child.tag_name == index_or_tagname: return child raise KeyError(index_or_tagname) raise ValueError('Leave nodes have no children that can be indexed!') def __contains__(self, tag_name: str) -> bool: """ Returns true if a child with the given tag name exists. Args: tag_name (str): tag_name which will be searched among to immediate descendants of this node. Returns: bool: True, if at least one descendant node with the given tag name exists, False otherwise """ # assert isinstance(tag_name, str) if self.children: for child in self.children: if child.tag_name == tag_name: return True return False raise ValueError('Leave node cannot contain other nodes') # generator = self.select_by_tag(tag_name, False) # try: # generator.__next__() # return True # except StopIteration: # return False @property # this needs to be a (dynamic) property, in case sef.parser gets updated def tag_name(self) -> str: """ Returns the tage name of Node, i.e. the name for XML or S-expression representation. By default the tag name is the name of the node's parser or, if the node's parser is unnamed, the node's parser's `ptype`. """ return self.parser.name or self.parser.ptype @property def result(self) -> StrictResultType: """ Returns the result from the parser that created the node. Error messages are not included in the result. Use `self.content()` if the result plus any error messages is needed. """ return self._result @result.setter def result(self, result: ResultType): # # made obsolete by static type checking with mypy # assert ((isinstance(result, tuple) and all(isinstance(child, Node) for child in result)) # or isinstance(result, Node) # or isinstance(result, str)), str(result) # Possible optimization: Do not allow single nodes as argument: # assert not isinstance(result, Node) self._len = -1 # lazy evaluation self._content = None if isinstance(result, Node): self.children = (result,) self._result = self.children else: if isinstance(result, tuple): self.children = result self._result = result or '' else: self.children = NoChildren self._result = result @property def content(self) -> str: """ Returns content as string, omitting error messages. """ if self._content is None: if self.children: self._content = "".join(child.content for child in self.children) else: # self._content = self._result self._content = str(self._result) self._result = self._content # self._result might be more efficient as a string!? return self._content @property def structure(self) -> str: """ Return structure (and content) as S-expression on a single line without any line breaks. """ return flatten_sxpr(self.as_sxpr(showerrors=False)) @property def pos(self) -> int: """Returns the position of the Node's content in the source text.""" if self._pos < 0: raise AssertionError("Position value not initialized!") return self._pos def init_pos(self, pos: int) -> 'Node': """ (Re-)initialize position value. Usually, the parser guard (`parsers.add_parser_guard()`) takes care of assigning the position in the document to newly created nodes. However, where Nodes are created outside the reach of the parser guard, their document-position must be assigned manually. This function recursively reassigns the position values of the child nodes, too. """ assert self._pos < 0 or self.pos == pos, str("pos mismatch %i != %i" % (self._pos, pos)) self._pos = pos # recursively adjust pos-values of all children offset = self.pos for child in self.children: child.init_pos(offset) offset = child.pos + len(child) return self @property def attributes(self): """ Returns a dictionary of XML-Attributes attached to the Node. """ if not hasattr(self, '_xml_attr'): self._xml_attr = OrderedDict() return self._xml_attr def _tree_repr(self, tab, open_fn, close_fn, data_fn=lambda i: i, density=0) -> str: """ Generates a tree representation of this node and its children in string from. The kind ot tree-representation that is determined by several function parameters. This could be an XML-representation or a lisp-like S-expression. Args: tab (str): The indentation string, e.g. '\t' or ' ' open_fn: (Node->str) A function that returns an opening string (e.g. an XML-tag_name) for a given node close_fn: (Node->str) A function that returns a closeF string (e.g. an XML-tag_name) for a given node. data_fn: (str->str) A function that filters the data string before printing, e.g. to add quotation marks Returns (str): A string that contains a (serialized) tree representation of the node and its children. """ head = open_fn(self) tail = close_fn(self) if not self.result: return head.rstrip() + tail.lstrip() tail = tail.lstrip(None if density & 2 else '') if self.children: content = [] for child in self.children: subtree = child._tree_repr(tab, open_fn, close_fn, data_fn, density).split('\n') content.append('\n'.join((tab + s) for s in subtree)) return head + '\n'.join(content) + tail res = cast(str, self.result) # safe, because if there are no children, result is a string if density & 1 and res.find('\n') < 0: # and head[0] == "<": # except for XML, add a gap between opening statement and content gap = ' ' if head.rstrip()[-1] != '>' else '' return head.rstrip() + gap + data_fn(self.result) + tail.lstrip() else: return head + '\n'.join([tab + data_fn(s) for s in res.split('\n')]) + tail def as_sxpr(self, src: str = None, compact: bool = False, showerrors: bool = True) -> str: """ Returns content as S-expression, i.e. in lisp-like form. Args: src: The source text or `None`. In case the source text is given the position of the element in the text will be reported as line and column. compact: If True a compact representation is returned where brackets are omitted and only the indentation indicates the tree structure. """ left_bracket, right_bracket, density = ('', '', 1) if compact else ('(', '\n)', 0) lbreaks = linebreaks(src) if src else [] # type: List[int] def opening(node) -> str: """Returns the opening string for the representation of `node`.""" txt = [left_bracket, node.tag_name] # s += " '(pos %i)" % node.add_pos if hasattr(node, '_xml_attr'): txt.extend(' `(%s "%s")' % (k, v) for k, v in node.attributes.items()) if src: txt.append(" `(pos %i %i %i)" % (node.pos, *line_col(lbreaks, node.pos))) # if node.error_flag: # just for debugging error collecting # txt += " HAS ERRORS" if showerrors and node.errors: txt.append(" `(err `%s)" % ' '.join(str(err) for err in node.errors)) return "".join(txt) + '\n' def closing(node) -> str: """Returns the closing string for the representation of `node`.""" return right_bracket def pretty(strg): """Encloses `strg` with the right kind of quotation marks.""" return '"%s"' % strg if strg.find('"') < 0 \ else "'%s'" % strg if strg.find("'") < 0 \ else '"%s"' % strg.replace('"', r'\"') return self._tree_repr(' ', opening, closing, pretty, density=density) def as_xml(self, src: str = None, showerrors: bool = True) -> str: """ Returns content as XML-tree. Args: src: The source text or `None`. In case the source text is given the position will also be reported as line and column. """ def opening(node) -> str: """Returns the opening string for the representation of `node`.""" txt = ['<', node.tag_name] has_reserved_attrs = hasattr(node, '_xml_attr') \ and any (r in node.attributes for r in {'err', 'line', 'col'}) if hasattr(node, '_xml_attr'): txt.extend(' %s="%s"' % (k, v) for k, v in node.attributes.items()) if src and not has_reserved_attrs: txt.append(' line="%i" col="%i"' % line_col(line_breaks, node.pos)) if showerrors and node.errors and not has_reserved_attrs: txt.append(' err="%s"' % ''.join(str(err).replace('"', r'\"') for err in node.errors)) return "".join(txt + [">\n"]) def closing(node): """Returns the closing string for the representation of `node`.""" return '\n' line_breaks = linebreaks(src) if src else [] return self._tree_repr(' ', opening, closing, density=1) def select(self, match_function: Callable, include_root: bool=True) -> Iterator['Node']: """ Finds nodes in the tree that fulfill a given criterion. `select` is a generator that yields all nodes for which the given `match_function` evaluates to True. The tree is traversed pre-order. See function `Node.select_by_tag` for some examples. Args: match_function (function): A function that takes as Node object as argument and returns True or False include_root (bool): If False, only descendant nodes will be checked for a match. Yields: Node: All nodes of the tree for which ``match_function(node)`` returns True """ if include_root and match_function(self): yield self else: for child in self.children: for node in child.select(match_function, True): yield node def select_by_tag(self, tag_names: Union[str, AbstractSet[str]], include_root: bool=True) -> Iterator['Node']: """ Returns an iterator that runs through all descendants that have one of the given tag names. Examples:: >>> tree = parse_sxpr('(a (b "X") (X (c "d")) (e (X "F")))') >>> list(flatten_sxpr(item.as_sxpr()) for item in tree.select_by_tag("X", False)) ['(X (c "d"))', '(X "F")'] >>> list(flatten_sxpr(item.as_sxpr()) for item in tree.select_by_tag({"X", "b"}, False)) ['(b "X")', '(X (c "d"))', '(X "F")'] >>> any(tree.select_by_tag('a', False)) False >>> list(flatten_sxpr(item.as_sxpr()) for item in tree.select_by_tag('a', True)) ['(a (b "X") (X (c "d")) (e (X "F")))'] >>> flatten_sxpr(next(tree.select_by_tag("X", False)).as_sxpr()) '(X (c "d"))' Args: tag_name(set): A tag name or set of tag names that is being searched for include_root (bool): If False, only descendant nodes will be checked for a match. Yields: Node: All nodes which have a given tag name. """ if isinstance(tag_names, str): tag_names = frozenset({tag_names}) return self.select(lambda node: node.tag_name in tag_names, include_root) def pick(self, tag_names: Union[str, Set[str]]) -> Optional['Node']: """ Picks the first descendant with one of the given tag_names. This function is just syntactic sugar for ``next(node.select_by_tag(tag_names, False))``. However, rather than raising a StopIterationError if no descendant with the given tag-name exists, it returns None. """ try: return next(self.select_by_tag(tag_names, False)) except StopIteration: return None def tree_size(self) -> int: """ Recursively counts the number of nodes in the tree including the root node. """ return sum(child.tree_size() for child in self.children) + 1 class RootNode(Node): """ errors (list): A list of all errors that have occured so far during processing (i.e. parsing, AST-transformation, compiling) of this tree. error_flag (int): the highest warning or error level of all errors that occurred. """ def __init__(self, node: Optional[Node] = None) -> 'RootNode': super().__init__(ZOMBIE_PARSER, '') self.all_errors = [] self.err_nodes_keep = [] self.error_flag = 0 if node is not None: self.swallow(node) # def _propagate_errors(self): # if not self.all_errors or not self.error_propagation: # return # self.all_errors.sort(key=lambda e: e.pos) # i = 0 # for leaf in self.select(lambda nd: not nd.children, False): # leaf.errors = [] # while i < len(self.all_errors) \ # and leaf.pos <= self.all_errors[i].add_pos < leaf.add_pos + leaf.len: # leaf._errors.append(self.all_errors[i]) # i += 1 # if i >= len(self.all_errors): # break # # def _propagate_new_error(self, error): # if self.error_propagation: # for leaf in self.select(lambda nd: not nd.children, True): # if leaf.pos <= error.add_pos < leaf.add_pos + leaf.len: # leaf._errors.append(error) # break # else: # assert False, "Error %s at pos %i out of bounds" % (str(error), error.add_pos) def swallow(self, node: Node) -> 'RootNode': self._result = node._result self.children = node.children self._len = node._len self._pos = node._pos self.parser = node.parser if hasattr(node, '_xml_attr'): self._xml_attr = node._xml_attr self._content = node._content return self def add_error_obj(self, node: Node, error: Error) -> 'RootNode': self.all_errors.append(error) self.error_flag = max(self.error_flag, error.code) node.errors.append(error) self.err_nodes_keep.append(node) return self def add_error(self, node: Node, message: str, code: int = Error.ERROR) -> 'RootNode': """ Adds an error to this tree. Parameters: pos(int): The position of the error in the source text message(str): A string with the error message.abs code(int): An error code to identify the kind of error """ error = Error(message, code, node=node) self.add_error_obj(node, error) def collect_errors(self) -> List[Error]: """Returns the list of errors, ordered bv their position. """ # for node in self.err_nodes: # lazy evaluation of positions # for err in node.errors: # moved to error.Error.pos # err.pos = node.pos self.all_errors.sort(key=lambda e: e.pos) for node in self.err_nodes_keep: # redundant: consider removing Error.Error._node_keep for error in node.errors: # assert error._pos < 0 or node.pos <= error._pos <= node.len error._pos = node.pos self.err_nodes_keep = [] errors = self.all_errors # for error in self.all_errors: # _ = error.pos return errors ZOMBIE_NODE = Node(ZOMBIE_PARSER, '') def parse_sxpr(sxpr: str) -> Node: """ Generates a tree of nodes from an S-expression. This can - among other things - be used for deserialization of trees that have been serialized with `Node.as_sxpr()` or as a convenient way to generate test data. Example: >>> parse_sxpr("(a (b c))").as_sxpr() '(a\\n (b\\n "c"\\n )\\n)' """ sxpr = StringView(sxpr).strip() mock_parsers = dict() def next_block(s: StringView): """Generator that yields all characters until the next closing bracket that does not match an opening bracket matched earlier within the same package.""" s = s.strip() try: while s[0] != ')': if s[0] != '(': raise ValueError('"(" expected, not ' + s[:10]) # assert s[0] == '(', s level = 1 k = 1 while level > 0: if s[k] == '(': level += 1 elif s[k] == ')': level -= 1 k += 1 yield s[:k] s = s[k:].strip() except IndexError: errmsg = ('Malformed S-expression. Unprocessed part: "%s"' % s) if s \ else 'Malformed S-expression. Closing bracket(s) ")" missing.' raise AssertionError(errmsg) def inner_parser(sxpr: StringView) -> Node: if sxpr[0] != '(': raise ValueError('"(" expected, not ' + sxpr[:10]) # assert sxpr[0] == '(', sxpr sxpr = sxpr[1:].strip() match = sxpr.match(re.compile(r'[\w:]+')) if match is None: raise AssertionError('Malformed S-expression Node-tagname or identifier expected, ' 'not "%s"' % sxpr[:40].replace('\n', '')) end = match.end() - sxpr.begin tagname = sxpr[:end] name, class_name = (tagname.split(':') + [''])[:2] sxpr = sxpr[end:].strip() attributes = OrderedDict() if sxpr[0] == '(': result = tuple(inner_parser(block) for block in next_block(sxpr)) else: lines = [] while sxpr and sxpr[0:1] != ')': # parse attributes while sxpr[:2] == "`(": i = sxpr.find('"') k = sxpr.find(')') # read very special attribute pos if sxpr[2:5] == "pos" and 0 < i < k: pos = int(sxpr[5:k].strip().split(' ')[0]) # ignore very special attribute err elif sxpr[2:5] == "err" and 0 <= sxpr.find('`', 5) < k: m = sxpr.find('(', 5) while m >= 0 and m < k: m = sxpr.find('(', k) k = max(k, sxpr.find(')', max(m, 0))) # read attributes else: attr = sxpr[2:i].strip() value = sxpr[i:k].strip()[1:-1] attributes[attr] = value sxpr = sxpr[k+1:].strip() # parse content for qtmark in ['"""', "'''", '"', "'"]: match = sxpr.match(re.compile(qtmark + r'.*?' + qtmark, re.DOTALL)) if match: end = match.end() - sxpr.begin i = len(qtmark) lines.append(str(sxpr[i:end - i])) sxpr = sxpr[end:].strip() break else: match = sxpr.match(re.compile(r'(?:(?!\)).)*', re.DOTALL)) end = match.end() - sxpr.begin lines.append(str(sxpr[:end])) sxpr = sxpr[end:] result = "\n".join(lines) node = Node(mock_parsers.setdefault(tagname, MockParser(name, ':' + class_name)), result) if attributes: node.attributes.update(attributes) return node return inner_parser(sxpr) def parse_xml(xml: str) -> Node: """ Generates a tree of nodes from a (Pseudo-)XML-source. """ xml = StringView(xml) PlainText = MockParser('', 'PlainText') mock_parsers = {':PlainText': PlainText} def parse_attributes(s: StringView) -> Tuple[StringView, OrderedDict]: """Parses a sqeuence of XML-Attributes. Returns the string-slice beginning after the end of the attributes.""" attributes = OrderedDict() restart = 0 for match in s.finditer(re.compile(r'\s*(?P\w+)\s*=\s*"(?P.*)"\s*')): d = match.groupdict() attributes[d['attr']] = d['value'] restart = match.end() - s.begin return (s[restart:], attributes) def parse_opening_tag(s: StringView) -> Tuple[StringView, str, OrderedDict, bool]: """Parses an opening tag. Returns the string segment following the the opening tag, the tag name, a dictionary of attributes and a flag indicating whether the tag is actually a solitary tag as indicated by a slash at the end, i.e.
.""" match = s.match(re.compile(r'<\s*(?P[\w:]+)\s*')) assert match tagname = match.groupdict()['tagname'] s, attributes = parse_attributes(s[match.end() - s.begin:]) i = s.find('>') assert i >= 0 return s[i+1,], tagname, attributes, s[i-1] == "/" def parse_closing_tag(s: StringView) -> Tuple[StringView, str]: """Parses a closing tag returns the string segment, just after the closing tag.""" match = s.match(re.compile(r'[\w:]+)>')) assert match tagname = match.groupdict()['tagname'] return s[match.end() - s.begin:], tagname def parse_leaf_content(s: StringView) -> Tuple[StringView, str]: """Parses a piece of the content of a tag, just until the next opening, closing or solitary tag is reached.""" i = 0 while s[i] != "<" or s[max(0, i-1)] == "\\": i = s.find("<", i) return s[i:], s[:i] def parse_full_content(s: StringView) -> Tuple[StringView, Node]: """Parses the full content of a tag, starting right at the beginning of the opening tag and ending right after the closing tag. """ result = [] s, tagname, attributes, solitary = parse_opening_tag(s) name, class_name = (tagname.split(":") + [''])[:2] if not solitary: while s and not s[:2] == "