PerSystSqlOperator.cpp 9.87 KB
Newer Older
1
//================================================================================
2
// Name        : PerSystSqlOperator.cpp
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// Author      : Carla Guillen
// Contact     : info@dcdb.it
// Copyright   : Leibniz Supercomputing Centre
// Description : Template implementing features to use Units in Operators.
//================================================================================

//================================================================================
// This file is part of DCDB (DataCenter DataBase)
// Copyright (C) 2018-2019 Leibniz Supercomputing Centre
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
//================================================================================

28
29
#include "PerSystSqlOperator.h"

30
31
32
33
34
#include <boost/log/sources/record_ostream.hpp>
#include <boost/log/trivial.hpp>
#include <boost/log/utility/formatting_ostream.hpp>
#include <boost/parameter/keyword.hpp>
#include <stddef.h>
35
#include <cmath>
36
#include <cstdint>
37
#include <memory>
38
#include <string>
39
#include <numeric>
40
41

#include "../../../common/include/logging.h"
42
#include "../../../common/include/sensorbase.h"
43
44
45
#include "../../../common/include/timestamp.h"
#include "../../includes/CommonStatistics.h"
#include "../../includes/QueryEngine.h"
46
#include "../../includes/UnitTemplate.h"
47

48
PerSystSqlOperator::PerSystSqlOperator(const std::string& name) :
49
50
		OperatorTemplate(name), JobOperatorTemplate(name), _number_of_even_quantiles(0),
		_severity_formula(NOFORMULA), _severity_threshold(0), _severity_exponent(0),
51
		_severity_max_memory(0), _go_back_ns(0), _backend(DEFAULT), _scaling_factor(1) {
52
53
}

54
PerSystSqlOperator::~PerSystSqlOperator() {
55
56
}

57
void PerSystSqlOperator::compute(U_Ptr unit, qeJobData& jobData) {
58
59
60
    // Clearing the buffer, if already allocated
	_buffer.clear();
    size_t elCtr=0;
Carla Guillen's avatar
Carla Guillen committed
61
    uint64_t my_timestamp = getTimestamp() - _go_back_ns;
62
63
64
65
66
67
68
69
    // Making sure that the aggregation boundaries do not go past the job start/end time
    uint64_t jobEnd   = jobData.endTime!=0 && my_timestamp > jobData.endTime ? jobData.endTime : my_timestamp;
    uint64_t jobStart = jobEnd-my_timestamp < jobData.startTime ? jobData.startTime : jobEnd-my_timestamp;
    // Job units are hierarchical, and thus we iterate over all sub-units associated to each single node
    for(const auto& subUnit : unit->getSubUnits()) {
        // Getting the most recent values as specified in _window
        // Since we do not clear the internal buffer, all sensor readings will be accumulated in the same vector
        for(const auto& in : subUnit->getInputs()) {
Carla Guillen's avatar
Bug fix    
Carla Guillen committed
70
            if(!_queryEngine.querySensor(in->getName(), my_timestamp, my_timestamp, _buffer, false)){
71
                LOG(debug) << "PerSystSql Operator " << _name << " cannot read from sensor " << in->getName() << "!";
72
73
74
75
76
77
78
                return;
            }
        }
    }
    compute_internal(unit, _buffer);
}

Carla Guillen's avatar
Carla Guillen committed
79
void PerSystSqlOperator::compute_internal(U_Ptr& unit, vector<reading_t>& buffer) {
Carla Guillen Carias's avatar
Carla Guillen Carias committed
80
	_quantileSensors.clear();
81
82
    reading_t reading;
    AggregatorSensorBase::aggregationOps_t op;
Carla Guillen's avatar
Carla Guillen committed
83
    reading.timestamp = getTimestamp() - _go_back_ns;
84
85
86

    std::vector<double> douBuffer;
    punToDoubles(buffer, douBuffer);
87
88
89
90
91
92
    // Performing the actual aggregation operation
    for(const auto& out : unit->getOutputs()) {
        op = out->getOperation();
        if(op!=AggregatorSensorBase::QTL) {
            switch (op) {
                case AggregatorSensorBase::SUM:
93
94
95
96
97
                	if(_backend == CASSANDRA){
                		reading.value = std::accumulate(douBuffer.begin(), douBuffer.end(), 0.0) * _scaling_factor;
                	} else {
                		reading.value = punDoubleToLL(std::accumulate(douBuffer.begin(), douBuffer.end(), 0.0));
                	}
98
99
                    break;
                case AggregatorSensorBase::AVG:
100
101
102
103
104
                	if(_backend == CASSANDRA){
                		reading.value = std::accumulate(douBuffer.begin(), douBuffer.end(), 0.0)/douBuffer.size() * _scaling_factor;
                	} else {
                		reading.value = punDoubleToLL(std::accumulate(douBuffer.begin(), douBuffer.end(), 0.0)/douBuffer.size());
                	}
105
106
                    break;
                case AggregatorSensorBase::OBS:
107
               		reading.value = computeObs(buffer);
108
                    break;
109
                case AggregatorSensorBase::AVG_SEV:
110
111
112
113
114
                	if(_backend == CASSANDRA) {
                		reading.value = computeSeverityAverage(douBuffer)* _scaling_factor;
                	} else {
                		reading.value = punDoubleToLL(computeSeverityAverage(douBuffer));
                	}
115
                    break;
116
                default:
117
                    LOG(warning) << _name << ": Operation " << op << " not supported!";
118
119
120
                    reading.value = 0;
                    break;
            }
121
122
123
124
125
            if(_backend == CASSANDRA){
            	out->storeReading(reading);
            } else {
            	//ToDo
            }
Carla Guillen Carias's avatar
Carla Guillen Carias committed
126
        } else {
Carla Guillen's avatar
Carla Guillen committed
127
            _quantileSensors.push_back(out);
128
129
130
131
        }
    }

    if(!_quantileSensors.empty()) {
132
133
    	vector<double> quantiles;
      	computeEvenQuantiles(douBuffer, _number_of_even_quantiles, quantiles);
134
        for(unsigned idx=0; idx<quantiles.size(); idx++) {
135
            reading.value = punDoubleToLL(quantiles[idx]);
136
137
138
139
140
            _quantileSensors[idx]->storeReading(reading);
        }
    }
}

141
void PerSystSqlOperator::compute(U_Ptr unit){
142
143
//nothing here!
}
Carla Guillen Carias's avatar
Carla Guillen Carias committed
144

145
146
double severity_formula1(double metric, double threshold, double exponent){
	double val = metric - threshold;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
147
	if (val > 0) {
148
		double ret = (pow(val, exponent));
Carla Guillen Carias's avatar
Carla Guillen Carias committed
149
150
151
152
153
154
155
156
		if(ret > 1){
			return 1;
		}
		return ret;
	}
	return 0;
}

157
double severity_formula2(double metric, double threshold, double exponent){
Carla Guillen Carias's avatar
Carla Guillen Carias committed
158
159
160
	if(!threshold){
		return -1;
	}
161
	double val = metric / threshold - 1;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
162
	if (val > 0) {
163
		double ret= (pow(val, exponent));
Carla Guillen Carias's avatar
Carla Guillen Carias committed
164
165
166
167
168
169
170
171
		if(ret > 1){
			return 1;
		}
		return ret;
	}
	return 0;
}

172
double severity_formula3(double metric, double threshold, double exponent){
Carla Guillen Carias's avatar
Carla Guillen Carias committed
173
174
175
	if (!threshold) {
		return -1;
	}
176
	double val = metric / threshold;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
177
	if (val > 0) {
178
		double ret= (1 - pow(val, exponent));
Carla Guillen Carias's avatar
Carla Guillen Carias committed
179
180
181
182
183
184
185
186
187
188
189
		if(ret > 1 ){
			return 1;
		}
		if( ret < 0 ){
			return 0;
		}
		return ret;
	}
	return 0;
}

190
191
192
double severity_memory(double metric, double threshold, double max_memory){
	double denominator = max_memory - threshold;
	double severity = -1;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
193
194
195
196
197
198
199
200
201
202
	if(denominator){
		severity = metric - threshold/(max_memory - threshold);
		if(severity > 1) {
			severity = 1;
		} else if(severity < 0){
			severity = 0;
		}
	}
	return severity;
}
203

204
205
double PerSystSqlOperator::computeSeverityAverage(std::vector<double> & buffer){
	std::vector<double> severities;
206
207
	switch( _severity_formula ) {
		case (FORMULA1):
208
209
			for(auto val : buffer){
				auto severity = severity_formula1(val, _severity_threshold, _severity_exponent);
210
211
212
213
				severities.push_back(severity);
			}
		break;
		case (FORMULA2):
214
215
			for(auto val: buffer){
				auto severity = severity_formula2(val, _severity_threshold, _severity_exponent);
216
217
218
219
				severities.push_back(severity);
			}
		break;
		case (FORMULA3):
220
221
			for(auto val: buffer){
				auto severity = severity_formula3(val, _severity_threshold, _severity_exponent);
222
223
224
225
				severities.push_back(severity);
			}
		break;
		case (MEMORY_FORMULA):
226
227
			for(auto val: buffer){
				auto severity = severity_memory(val, _severity_threshold, _severity_max_memory);
228
229
230
231
				severities.push_back(severity);
			}
		break;
		case (NOFORMULA):
232
233
234
			for(auto val: buffer){
				severities.push_back(severity_noformula());
			}
Carla Guillen Carias's avatar
Carla Guillen Carias committed
235
		break;
236
237
238
239
240
		default:
			return 0.0;
			break;
	}
	if (severities.size()){
241
		return (std::accumulate(severities.begin(),severities.end(), 0.0) / severities.size());
242
243
	}
	return 0.0;
244
}
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291


void punToDoubles(std::vector<reading_t> & buffer, std::vector<double> & outDoubleVec){
	for(auto & reading: buffer){
		outDoubleVec.push_back(punLLToDouble(reading.value));
	}
}

double punLLToDouble(long long value){
        double * returnval;
        returnval = (double *)(&value);
        return *returnval;
}

long long punDoubleToLL(double value){
        long long * returnval;
        returnval = (long long *)(&value);

        return *returnval;
}


void computeEvenQuantiles(std::vector<double> &data, const unsigned int NUMBER_QUANTILES, std::vector<double> &quantiles) {
        if (data.empty() || NUMBER_QUANTILES == 0) {
                return;
        }
        std::sort(data.begin(), data.end());
        int elementNumber = data.size();
        quantiles.resize(NUMBER_QUANTILES + 1); //+min
        double factor = elementNumber/static_cast<double>(NUMBER_QUANTILES);
        quantiles[0] = data[0]; //minimum
        quantiles[NUMBER_QUANTILES] = data[data.size() - 1]; //maximum
        for (unsigned int i = 1; i < NUMBER_QUANTILES; i++) {
                if (elementNumber > 1) {
                        int idx = static_cast<int>(std::floor(i * factor));
                        if(idx == 0){
                                quantiles[i] = data[0];
                        } else {
                                double rest = (i * factor) - idx;
                                quantiles[i] = data[idx - 1] + rest * (data[idx] - data[idx - 1]); //ToDo scaling factor??
                        }
                } else { //optimization, we don't need to calculate all the quantiles
                        quantiles[i] = data[0];
                }
        }
}