JobAnalyzerTemplate.h 15.3 KB
Newer Older
1
2
3
//================================================================================
// Name        : JobAnalyzerTemplate.h
// Author      : Alessio Netti
Micha Müller's avatar
Micha Müller committed
4
// Contact     : info@dcdb.it
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
// Copyright   : Leibniz Supercomputing Centre
// Description : Template implementing features needed by Analyzers.
//================================================================================

//================================================================================
// This file is part of DCDB (DataCenter DataBase)
// Copyright (C) 2018-2019 Leibniz Supercomputing Centre
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
//================================================================================

#ifndef PROJECT_JOBANALYZERTEMPLATE_H
#define PROJECT_JOBANALYZERTEMPLATE_H

31
#include "AnalyzerTemplate.h"
32
33

/**
34
35
 * @brief Template that implements features needed by Job Analyzers and
 *        complying to AnalyzerInterface.
36
 *
37
38
 * @details This template is derived from AnalyzerTemplate, and is adjusted to
 *          simplify job-related computations.
39
 *
40
 * @ingroup analyzer
41
42
 */
template <typename S>
43
class JobAnalyzerTemplate : virtual public AnalyzerTemplate<S> {
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    // The template shall only be instantiated for classes which derive from SensorBase
    static_assert(is_base_of<SensorBase, S>::value, "S must derive from SensorBase!");

protected:
    
    // For readability
    using S_Ptr = shared_ptr<S>;
    using U_Ptr = shared_ptr< UnitTemplate<S> >;

public:
    
    /**
    * @brief            Class constructor
    *
    * @param name       Name of the analyzer
    */
    JobAnalyzerTemplate(const string name) :
61
            AnalyzerTemplate<S>(name),
62
63
            _jobDataVec(nullptr) {
        
64
        _unitAccess.store(false);
65
        this->_dynamic = true;
66
67
68
69
70
71
72
    }

    /**
    * @brief            Copy constructor
    *
    */
    JobAnalyzerTemplate(const JobAnalyzerTemplate& other) :
73
            AnalyzerTemplate<S>(other),
74
75
            _jobDataVec(nullptr) {
        
76
        _unitAccess.store(false);
77
        this->_dynamic = true;
78
79
80
81
82
83
84
    }

    /**
    * @brief            Assignment operator
    *
    */
    JobAnalyzerTemplate& operator=(const JobAnalyzerTemplate& other) {
85
        AnalyzerTemplate<S>::operator=(other);
86
        _jobDataVec = nullptr;
87
        this->_dynamic = true;
88
        return *this;
89
90
91
92
93
94
95
96
97
    }
            
    /**
    * @brief            Class destructor
    */
    virtual ~JobAnalyzerTemplate() {
        if(_jobDataVec)
            delete _jobDataVec;
    }
98
    
99
100
101
102
103
    /**
    * @brief              Returns the units of this analyzer
    *
    *                     The units returned by this method are of the UnitInterface type. The actual units, in their
    *                     derived type, are used internally. This type of analyzer employs dynamic units that are
104
105
    *                     generated at runtime: as such, an internal unit lock is acquired upon calling this method,
    *                     and must later be released through the releaseUnits() method.
106
107
108
    *
    * @return             The vector of UnitInterface objects of this analyzer
    */
109
110
111
112
113
114
115
116
117
118
119
    virtual vector<UnitPtr>& getUnits() override	{
        // Spinlock to regulate access to units - normally innocuous
        while(_unitAccess.exchange(true)) {}
        return this->_baseUnits;
    }
    
    /**
     * @brief             Releases the access lock to units
     * 
     *                    This method must be called anytime operations on units are performed through getUnits().
     */
120
    virtual void releaseUnits() override {
121
        _unitAccess.store(false);
122
    }
123
    
124
125
126
127
128
    /**
    * @brief              Initializes this analyzer
    *
    * @param io           Boost ASIO service to be used
    */
129
    virtual void init(boost::asio::io_service& io) override { AnalyzerInterface::init(io); }
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    /**
    * @brief              Performs an on-demand compute task
    *
    *                     Unlike the protected computeAsync and compute methods, computeOnDemand allows to interactively
    *                     perform data analytics queries on the analyzer, which must have the _streaming attribute set
    *                     to false. A unit is generated on the fly, corresponding to the input node given as input,
    *                     and results are returned in the form of a map.
    *
    * @param node         Unit name for which the query must be performed
    * @return             a map<string, reading_t> containing the output of the query
    */
    virtual map<string, reading_t> computeOnDemand(const string& node="__root__") override {
        map<string, reading_t> outMap;
144
        if( !this->_streaming ) {
145
146
            try {
                // Getting exclusive access to the analyzer
147
                while( this->_onDemandLock.exchange(true) ) {}
148
                uint32_t jobId = MQTTChecker::topicToJob(node);
149
150
                if(_jobDataVec)
                    _jobDataVec->clear();
151
                vector<qeJobData>* buf = this->_queryEngine.queryJob(jobId, 0, 0, _jobDataVec, true, false);
152
153
                if(buf) _jobDataVec = buf;
                if(buf && !buf->empty()) {
154
                    U_Ptr jobUnit = jobDataToUnit(_jobDataVec->at(0));
155

156
                    this->compute(jobUnit, _jobDataVec->at(0));
157
158
159
160
                    for (const auto &o : jobUnit->getOutputs()) {
                        outMap.insert(make_pair(o->getName(), o->getLatestValue()));
                        o->clearReadingQueue();
                    }
161
162
163
164
165
166
167
                    if(this->_flatten) {
                        for (const auto& su : jobUnit->getSubUnits())
                            for (const auto &o : su->getOutputs()) {
                                outMap.insert(make_pair(o->getName(), o->getLatestValue()));
                                o->clearReadingQueue();
                            }
                    }
168
                } else
169
                    throw std::runtime_error("Analyzer " + this->_name + ": cannot retrieve job data!");
170
            } catch(const exception& e) {
171
                this->_onDemandLock.store(false);
172
173
                throw;
            }
174
175
            this->_onDemandLock.store(false);
        } else if( this->_keepRunning ) {
176
            bool found = false;
177
178
179
            //Spinning explicitly as we need to iterate on the derived Unit objects
            while(_unitAccess.exchange(true)) {}
            for(const auto& u : this->_units)
180
                if(u->getName() == node) {
181
                    found = true;
182
                    for(const auto& o : u->getBaseOutputs())
183
                        outMap.insert(make_pair(o->getName(), o->getLatestValue()));
184
185
186
187
188
                    if(this->_flatten) {
                        for (const auto& su : u->getSubUnits())
                            for (const auto &o : su->getOutputs())
                                outMap.insert(make_pair(o->getName(), o->getLatestValue()));
                    }
189
                }
190
            releaseUnits();
191
192

            if(!found)
193
                throw std::domain_error("Job " + node + " does not belong to the domain of " + this->_name + "!");
194
        } else
195
            throw std::runtime_error("Analyzer " + this->_name + ": not available for on-demand query!");
196
197
        return outMap;
    }
198
    
199
protected:
200
    
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    using AnalyzerTemplate<S>::compute;
    
    /**
    * @brief              Data analytics (job) computation logic
    *
    *                     This method contains the actual logic used by the analyzed, and is automatically called by
    *                     the computeAsync method. This variant of the compute() method defined in AnalyzerTemplate also
    *                     includes a job data structure in its list of arguments, and is specialized for job analyzers.
    *
    * @param unit         Shared pointer to unit to be processed
    * @param jobData      Job data structure 
    */
    virtual void compute(U_Ptr unit, qeJobData& jobData) = 0;
    
215
216
217
218
219
220
221
222
223
224
225
    /**
     * @brief           This method encapsulates all logic to generate and manage job units
     * 
     *                  The algorithm implemented in this method is very similar to that used in computeOnDemand in
     *                  AnalyzerTemplate, and it is used to manage job units both in on-demand and streaming mode. The
     *                  internal unit cache is used to store recent job units. Moreover, the job data returned by the
     *                  QueryEngine is converted to a format compatible with the UnitGenerator.
     * 
     * @param jobData   a qeJobData struct containing job information
     * @return          A shared pointer to a job unit object
     */
226
    virtual U_Ptr jobDataToUnit(const qeJobData& jobData) {
227
228
        string jobTopic = MQTTChecker::jobToTopic(jobData.jobId);
        U_Ptr jobUnit = nullptr;
229
230
        if(!this->_unitCache)
            throw std::runtime_error("Initialization error in analyzer " + this->_name + "!");
231

232
233
        if (this->_unitCache->count(jobTopic)) {
            jobUnit = this->_unitCache->at(jobTopic);
234
235
            if(!this->_streaming)
                LOG(debug) << "Analyzer " << this->_name << ": cache hit for unit " << jobTopic << ".";
236
237
            
        } else {
238
239
            if (!this->_unitCache->count(SensorNavigator::templateKey))
                throw std::runtime_error("No template unit in analyzer " + this->_name + "!");
240
241
            if(!this->_streaming)
                LOG(debug) << "Analyzer " << this->_name << ": cache miss for unit " << jobTopic << ".";
242
243
            U_Ptr uTemplate = this->_unitCache->at(SensorNavigator::templateKey);
            shared_ptr<SensorNavigator> navi = this->_queryEngine.getNavigator();
244
245
246
247
            UnitGenerator<S> unitGen(navi);
            vector<string> nodes;
            for (const auto &n : jobData.nodes)
                nodes.push_back(translateNodeName(n));
248
249
250
251
            // The job unit is generated as a hierarchical unit with the top level unit and the sub-units having
            // the same set of output sensors
            jobUnit = unitGen.generateHierarchicalUnit(jobTopic, nodes, uTemplate->getOutputs(), uTemplate->getInputs(), 
                      uTemplate->getOutputs(), uTemplate->getInputMode(), jobTopic, this->_relaxed);
252
253

            // Initializing sensors if necessary
254
            jobUnit->init(this->_cacheSize, this->_flatten);
255
            this->addToUnitCache(jobUnit);
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
        }
        return jobUnit;
    }
    
    /**
     * @brief             Translates a node name as returned by the resource manager to an internal representation
     * 
     *                    The external node name is usually just the hostname associated to the machine. This 
     *                    representation usually needs to be converted to an internal one that reflects the hierarchy
     *                    described by the sensor navigator. Since this logic is sytem-dependent, users can freely
     *                    override this method.
     * 
     * @param n           Raw node hostname
     * @return            Converted sensor navigator-friendly node name
     */
271
    virtual string translateNodeName(string n) { return MQTTChecker::formatTopic(n) + std::string(1, MQTT_SEP); }
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    
    /**
    * @brief              Performs a compute task
    *
    *                     This method is tasked with scheduling the next compute task, and invoking the internal
    *                     compute() method, which encapsulates the real logic of the analyzer. The compute method
    *                     is automatically called over units as required by the Analyzer's configuration.
    *                     
    *                     In the case of job analyzers, this method will also automatically retrieve the list of jobs
    *                     that were running in the last interval. One unit for each of them is instantiated (or 
    *                     retrieved from the local unit cache, if available) and then the compute phase starts.
    *
    */
    virtual void computeAsync() override {
286
287
288
289
        if(this->_delayInterval > 0) {
            sleep(this->_delayInterval);
            this->_delayInterval = 0;
            LOG(info) << "Analyzer " + this->_name + ": starting computation after delayed start!";
290
291
292
        }

        try {
293
294
            if(_jobDataVec)
                _jobDataVec->clear();
295
            vector<qeJobData>* buf = this->_queryEngine.queryJob(0, this->_interval * 1000000, 0, _jobDataVec, true, true);
296
297
            if(buf) {
                _jobDataVec = buf;
298
299
                _tempUnits.clear();
                // Producing units from the job data, discarding invalid jobs in the process
300
                for(const auto& job : *_jobDataVec) {
301
302
                    try {
                        _tempUnits.push_back(jobDataToUnit(job));
303
304
305
306
                    } catch(const invalid_argument& e2) { 
                        LOG(error) << e2.what(); 
                        _tempUnits.push_back(nullptr); 
                        continue; }
307
                }
308
309
                
                // Performing actual computation on each unit
310
311
312
                for(size_t idx=0; idx<_tempUnits.size(); idx++)
                    if(_tempUnits[idx])
                        this->compute(_tempUnits[idx], _jobDataVec->at(idx));
313
314
315
316
                // Acquiring the spinlock to refresh the exposed units
                while(_unitAccess.exchange(true)) {}
                this->clearUnits();
                for(const auto& ju : _tempUnits)
317
                    if(ju) {
318
                        this->addUnit(ju);
319
320
321
322
323
                        if(this->_flatten) {
                            for (const auto& su : ju->getSubUnits())
                                this->addUnit(su);
                        }
                    }
324
325
                _unitAccess.store(false);
                _tempUnits.clear();
326
327
            }
            else
328
                LOG(error) << "Analyzer " + this->_name + ": cannot retrieve job data!";
329
        } catch(const exception& e) {
330
            LOG(error) << "Analyzer " + this->_name + ": internal error " + e.what() + " during computation!";
331
            _unitAccess.store(false);
332
333
        }

334
335
336
337
        if (this->_timer && this->_keepRunning) {
            this->_timer->expires_at(timestamp2ptime(this->nextReadingTime()));
            this->_pendingTasks++;
            this->_timer->async_wait(bind(&JobAnalyzerTemplate::computeAsync, this));
338
        }
339
        this->_pendingTasks--;
340
    }
341
    
342
343
    // Vector of recently-modified units
    vector<U_Ptr> _tempUnits;
344
    // Spinlock used to regulate access to the internal units map, for "visualization" purposes
345
    atomic<bool> _unitAccess;
346
347
    // Vector of job data structures used to retrieve job data at runtime
    vector<qeJobData>* _jobDataVec;
348
349
    // Logger object
    boost::log::sources::severity_logger<boost::log::trivial::severity_level> lg;
350
351
352
353
354
    

};

#endif //PROJECT_JOBANALYZERTEMPLATE_H