sensorbase.h 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/*
 * SensorBase.h
 *
 *  Created on: 09.08.2018
 *      Author: Micha Mueller
 */

#ifndef SRC_SENSORBASE_H_
#define SRC_SENSORBASE_H_

#include <fstream>
#include <memory>
#include <string>
#include <limits.h>
#include <boost/lockfree/spsc_queue.hpp>
#include "logging.h"
#include "cacheentry.h"

class SensorBase {
public:
	static const size_t QUEUE_MAXLIMIT=1024;

	SensorBase(const std::string& name) :
		_name(name),
		_mqtt(""),
		_sinkPath(""),
		_skipConstVal(false),
		_cacheInterval(900000),
		_subsamplingFactor(1),
		_subsamplingIndex(0),
		_cache(nullptr),
		_delta(false),
		_firstReading(true),
		_readingQueue(nullptr),
		_sinkFile(nullptr) {

        _lastRawUValue.timestamp = 0;
        _lastRawUValue.value     = 0;
        _lastRawValue.timestamp = 0;
        _lastRawValue.value     = 0;
        _latestValue.timestamp	= 0;
        _latestValue.value		= 0;
        _lastSentValue.timestamp= 0;
        _lastSentValue.value	= 0;
        _accumulator.timestamp  = 0;
        _accumulator.value		= 0;
	}

	SensorBase(const SensorBase& other) :
		_name(other._name),
		_mqtt(other._mqtt),
		_skipConstVal(other._skipConstVal),
		_cacheInterval(other._cacheInterval),
		_subsamplingFactor(other._subsamplingFactor),
		_subsamplingIndex(0),
		_cache(nullptr),
		_delta(other._delta),
		_firstReading(true),
		_lastRawUValue(other._lastRawUValue),
		_lastRawValue(other._lastRawValue),
		_latestValue(other._latestValue),
        _lastSentValue(other._lastSentValue),
        _accumulator(other._accumulator),
		_readingQueue(nullptr),
		_sinkFile(nullptr) {}

	virtual ~SensorBase() {}

	SensorBase& operator=(const SensorBase& other) {
		_name = other._name;
		_mqtt = other._mqtt;
		_skipConstVal = other._skipConstVal;
		_cacheInterval = other._cacheInterval;
		_subsamplingFactor = other._subsamplingFactor;
		_subsamplingIndex = 0;
		_cache.reset(nullptr);
		_delta = other._delta;
		_firstReading = true;
		_lastRawUValue.timestamp = other._lastRawUValue.timestamp;
        _lastRawUValue.value     = other._lastRawUValue.value;
		_lastRawValue.timestamp = other._lastRawValue.timestamp;
        _lastRawValue.value     = other._lastRawValue.value;
		_latestValue.timestamp	= other._latestValue.timestamp;
		_latestValue.value		= other._latestValue.value;
        _lastSentValue.timestamp= other._lastSentValue.timestamp;
        _lastSentValue.value	= other._lastSentValue.value;
        _accumulator.timestamp  = other._accumulator.timestamp;
        _accumulator.value      = other._accumulator.value;
		_readingQueue.reset(nullptr);
		_sinkFile.reset(nullptr);

		return *this;
	}

	const bool 				isDelta()			const 	{ return _delta;}
	const std::string& 		getName() 			const	{ return _name; }
	const std::string&		getMqtt() 			const	{ return _mqtt; }
	const std::string&		getSinkPath() 		const	{ return _sinkPath; }
	bool					getSkipConstVal()	const	{ return _skipConstVal; }
	unsigned				getCacheInterval()	const	{ return _cacheInterval; }
	unsigned 				getSubsampling()	const   { return _subsamplingFactor; }
	const CacheEntry* const	getCache() 			const	{ return _cache.get(); }
	const reading_t&		getLatestValue()	const	{ return _latestValue; }
	const bool				isInit()			const 	{ return _cache && _readingQueue; }

	void	setSkipConstVal(bool skipConstVal)				{ _skipConstVal = skipConstVal;	}
	void	setDelta(const bool delta) 						{ _delta = delta; }
	void	setName(const std::string& name, int cpuID=-1)	{ _name = formatName(name, cpuID); }
	void	setMqtt(const std::string& mqtt)				{ _mqtt = mqtt; }
	void 	setSinkPath(const std::string& path)			{ _sinkPath = path; }
	void 	setCacheInterval(unsigned cacheInterval)		{ _cacheInterval = cacheInterval; }
	void	setSubsampling(unsigned factor)					{ _subsamplingFactor = factor; }
	void    setLastRaw(int64_t raw)                         { _lastRawValue.value = raw; }
	void    setLastURaw(uint64_t raw)                       { _lastRawUValue.value = raw; }

	const std::size_t	getSizeOfReadingQueue() const { return _readingQueue->read_available(); }
	std::size_t 		popReadingQueue(reading_t *reads, std::size_t max) const	{ return _readingQueue->pop(reads, max); }
	void 				clearReadingQueue() const	{ reading_t buf; while(_readingQueue->pop(buf)) {} }
	void				pushReadingQueue(reading_t *reads, std::size_t count) const	{ _readingQueue->push(reads, count); }

	void initSensor(unsigned interval) {
		uint64_t cacheSize = _cacheInterval / interval + 1;
		if(!_cache) {
			//TODO: have all time-related configuration parameters use the same unit (e.g. milliseconds)
			_cache.reset(new CacheEntry( (uint64_t)_cacheInterval * 1000000, cacheSize));
		}
		if(!_readingQueue) {
			_readingQueue.reset(new boost::lockfree::spsc_queue<reading_t>(QUEUE_MAXLIMIT));
		}
		if(!_sinkFile && _sinkPath != "") {
			_sinkFile.reset(new std::ofstream(_sinkPath));
			if(!_sinkFile->is_open())
				_sinkFile.reset(nullptr);
		}
	}

	/**
	 * Store a reading, in order to get it pushed to the data base eventually.
	 * Also this methods takes care of other optional reading post-processing,
	 * e.g. delta computation, subsampling, caching, scaling, etc.
	 *
	 * This is the primary storeReading() and should be used whenever possible.
	 *
	 * @param rawReading  Reading struct with value and timestamp to be stored.
	 * @param factor      Scaling factor, which is applied to the reading value (optional)
	 * @param maxValue    Maximum possible value of the reading; required for the
	 *                    delta computation to detect an overflow.
	 */
	void storeReading(reading_t rawReading, double factor=1.0, long long maxValue=LLONG_MAX) {
		reading_t reading = rawReading;
		if( _delta ) {
		    if (!_firstReading) {
              if (rawReading.value < _lastRawValue.value)
                  reading.value = (rawReading.value + (maxValue - _lastRawValue.value)) * factor;
              else
                  reading.value = (rawReading.value - _lastRawValue.value) * factor;
		    } else {
		      _firstReading = false;
		      _lastRawValue = rawReading;
		      return;
		    }
			_lastRawValue = rawReading;
		}
		else
			reading.value = rawReading.value * factor;

		if( _delta )
			// If in delta mode, _accumulator acts as a buffer, summing all deltas for the subsampling period
		    _accumulator.value += reading.value;
		else
		    _accumulator.value = reading.value;

		if (_subsamplingIndex++ % _subsamplingFactor == 0) {
            _accumulator.timestamp = reading.timestamp;
            //TODO: if sensor starts with values of 0, these won't be pushed. This should be fixed
            if( !(_skipConstVal && (_accumulator.value == _lastSentValue.value)) ) {
                _readingQueue->push(_accumulator);
                _lastSentValue = _accumulator;
            }
            // We reset the accumulator's value for the correct accumulation of deltas
			_accumulator.value = 0;
		}
		if (_sinkFile) {
		    try {
                _sinkFile->seekp(0, std::ios::beg);
                *_sinkFile << reading.value << std::endl;
            } catch(const std::exception &e) { _sinkFile->close(); _sinkFile.reset(nullptr); }
		}

		_cache->store(reading);
		_latestValue = reading;
	}

	/**
     * Store an unsigned reading, in order to get it pushed to the data base eventually.
     * Also this methods takes care of other optional reading post-processing,
     * e.g. delta computation, subsampling, caching, scaling, etc.
     *
     * This is a variant of the primary storeReading() for monotonically increasing
     * sensors reading unsigned 64bit values which may require more than the 63bit
     * offered by a signed reading_t. The readings are still stored as signed int64
     * in the database, therefore all such sensors should enable storage of deltas!
     *
     * This variant only adapts the delta computation for ureading_t actually.
     * FIXME: Avoid code duplication
     *
     * @param rawReading  Reading struct with (usigned) value and timestamp to be stored.
     * @param factor      Scaling factor, which is applied to the reading value (optional)
     * @param maxValue    Maximum possible value of the reading; required for the
     *                    delta computation to detect an overflow.
     */
	void storeReading(ureading_t rawReading, double factor=1.0, unsigned long long maxValue=ULLONG_MAX) {
        reading_t reading;
        reading.timestamp = rawReading.timestamp;
        if( _delta ) {
            if (!_firstReading) {
              if (rawReading.value < _lastRawUValue.value)
                  reading.value = (rawReading.value + (maxValue - _lastRawUValue.value)) * factor;
              else
                  reading.value = (rawReading.value - _lastRawUValue.value) * factor;
            } else {
              _firstReading = false;
              _lastRawUValue = rawReading;
              return;
            }
            _lastRawUValue = rawReading;
        }
        else
            reading.value = rawReading.value * factor;

        if( _delta )
            // If in delta mode, _accumulator acts as a buffer, summing all deltas for the subsampling period
            _accumulator.value += reading.value;
        else
            _accumulator.value = reading.value;

        if (_subsamplingIndex++ % _subsamplingFactor == 0) {
            _accumulator.timestamp = reading.timestamp;
            //TODO: if sensor starts with values of 0, these won't be pushed. This should be fixed
            if( !(_skipConstVal && (_accumulator.value == _lastSentValue.value)) ) {
                _readingQueue->push(_accumulator);
                _lastSentValue = _accumulator;
            }
            // We reset the accumulator's value for the correct accumulation of deltas
            _accumulator.value = 0;
        }
        if (_sinkFile) {
            try {
                _sinkFile->seekp(0, std::ios::beg);
                *_sinkFile << reading.value << std::endl;
            } catch(const std::exception &e) { _sinkFile->close(); _sinkFile.reset(nullptr); }
        }

        _cache->store(reading);
        _latestValue = reading;
    }

	static std::string formatName(const std::string& name, int cpuID=-1) {return cpuID<0 ? name : "cpu" + std::to_string(cpuID) + "." + name;}

	virtual void printConfig(LOG_LEVEL ll, LOGGER& lg, unsigned leadingSpaces=16) {
	  std::string leading(leadingSpaces, ' ');
	  LOG_VAR(ll) << leading << "Sensor: " << _name;
	  LOG_VAR(ll) << leading << "    MQTT Topic:  " << _mqtt;
	  LOG_VAR(ll) << leading << "    Sink:        " << (getSinkPath() != "" ? getSinkPath() : "none");
      LOG_VAR(ll) << leading << "    SubSampling: " << getSubsampling();
      LOG_VAR(ll) << leading << (_skipConstVal ? "    Skipping constant values" : "    No skipping of constant values");
      LOG_VAR(ll) << leading << (_delta ? "    Storing delta readings" : "    Storing absolute readings");
	}

protected:

	std::string _name;
	std::string _mqtt;
	std::string _sinkPath;
	bool _skipConstVal;
	unsigned int _cacheInterval;
	unsigned int _subsamplingFactor;
	unsigned int _subsamplingIndex;
	std::unique_ptr<CacheEntry> _cache;
	bool _delta;
	bool _firstReading;
	ureading_t _lastRawUValue;
	reading_t _lastRawValue;
	reading_t _latestValue;
	reading_t _lastSentValue;
	reading_t _accumulator;
	std::unique_ptr<boost::lockfree::spsc_queue<reading_t>> _readingQueue;
	std::unique_ptr<std::ofstream> _sinkFile;
};

//for better readability
using SBasePtr = std::shared_ptr<SensorBase>;

#endif /* SRC_SENSORBASE_H_ */