JobAnalyzerTemplate.h 15.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
//================================================================================
// Name        : JobAnalyzerTemplate.h
// Author      : Alessio Netti
// Copyright   : Leibniz Supercomputing Centre
// Description : Template implementing features needed by Analyzers.
//================================================================================

//================================================================================
// This file is part of DCDB (DataCenter DataBase)
// Copyright (C) 2018-2019 Leibniz Supercomputing Centre
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
//================================================================================

#ifndef PROJECT_JOBANALYZERTEMPLATE_H
#define PROJECT_JOBANALYZERTEMPLATE_H

30
#include "AnalyzerTemplate.h"
31
32
33
34
35
36
37
38
39
40
41
42
43
#include <boost/lockfree/spsc_queue.hpp>
#include <boost/property_tree/ptree.hpp>
#include <boost/property_tree/info_parser.hpp>
#include <boost/property_tree/json_parser.hpp>
#include <unordered_set>

/**
 * Template that implements features needed by Job Analyzers and complying to AnalyzerInterface.
 *
 * This template is derived from AnalyzerTemplate, and is adjusted to simplify job-related computations.
 *
 */
template <typename S>
44
class JobAnalyzerTemplate : public AnalyzerTemplate<S> {
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    // The template shall only be instantiated for classes which derive from SensorBase
    static_assert(is_base_of<SensorBase, S>::value, "S must derive from SensorBase!");

protected:
    
    // For readability
    using S_Ptr = shared_ptr<S>;
    using U_Ptr = shared_ptr< UnitTemplate<S> >;

public:
    
    /**
    * @brief            Class constructor
    *
    * @param name       Name of the analyzer
    */
    JobAnalyzerTemplate(const string name) :
62
            AnalyzerTemplate<S>(name),
63
64
65
66
67
68
69
70
71
72
73
            _jobUnitsQueue(nullptr),
            _jobDataVec(nullptr) {
        
        _mapAccess.store(false);
    }

    /**
    * @brief            Copy constructor
    *
    */
    JobAnalyzerTemplate(const JobAnalyzerTemplate& other) :
74
            AnalyzerTemplate<S>(other),
75
76
77
78
79
80
81
82
83
84
85
            _jobUnitsQueue(nullptr),
            _jobDataVec(nullptr) {
        
        _mapAccess.store(false);
    }

    /**
    * @brief            Assignment operator
    *
    */
    JobAnalyzerTemplate& operator=(const JobAnalyzerTemplate& other) {
86
        AnalyzerTemplate<S>::operator=(other);
87
88
89
90
91
92
93
94
95
96
97
        _jobUnitsQueue.reset(nullptr);
        _jobDataVec = nullptr;
    }
            
    /**
    * @brief            Class destructor
    */
    virtual ~JobAnalyzerTemplate() {
        if(_jobDataVec)
            delete _jobDataVec;
    }
98
    
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    /**
    * @brief              Perform a REST-triggered PUT action
    *
    *                     This implementation supplies a "jobs" action that can be used to retrieve the list of jobs
    *                     that have been recently processed by this analyzer.
    *
    * @param action       Name of the action to be performed
    * @param queries      Vector of queries (key-value pairs)
    *
    * @return             Response to the request as a <response, data> pair
    */
    virtual restResponse_t REST(const string& action, const unordered_map<string, string>& queries) override {
        std::ostringstream data;
        if(action=="jobs") {
            uint32_t maxJobs = queries.count("max")>0 ? stoull(queries.at("max")) : 100;
            bool json = queries.count("json")>0 ? queries.at("json")=="true" : false;
            uint32_t jobCtr = 0;
116
117
            if(!this->_unitCache)
                throw std::runtime_error("Initialization error in analyzer " + this->_name + "!");
118
119
120
121
            
            while( _mapAccess.exchange(true) ) {}
            if(json) {
                boost::property_tree::ptree root, units, sensors;
122
                for (auto it = this->_insertionLUT->rbegin(); it != this->_insertionLUT->rend() && jobCtr < maxJobs; ++it) {
123
124
125
126
127
                    for (const auto &s : *it->getBaseOutputs())
                        sensors.push_back(boost::property_tree::ptree::value_type("", boost::property_tree::ptree(s->getName())));
                    units.add_child(*it->getName(), sensors);
                    jobCtr++;
                }
128
                root.add_child(this->_name, units);
129
130
                boost::property_tree::write_json(data, root, true);
            } else {
131
                for (auto it = this->_insertionLUT->rbegin(); it != this->_insertionLUT->rend() && jobCtr < maxJobs; ++it) {
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
                    for (const auto &s : *it->getBaseOutputs())
                        data << *it->getName() << "::" << s->getMqtt() << "\n";
                    jobCtr++;
                }
            }
            _mapAccess.store(false);
        } else
            throw invalid_argument("Unknown plugin action " + action + " requested!");
        restResponse_t resp;
        resp.data = data.str();
        return  resp;
    }
    
    /**
    * @brief              Returns the units of this analyzer
    *
    *                     The units returned by this method are of the UnitInterface type. The actual units, in their
    *                     derived type, are used internally. This type of analyzer employs dynamic units that are
    *                     generated at runtime: as such, lock-free access to the units that have been modified
    *                     recently has to be guaranteed. If the pop parameter is true, recently-modified units
    *                     will be popped from an internal spsc queue, and returned. This mode is to be used when
    *                     retrieving new data to be sent. If pop=false, this method will return an empty vector, as
    *                     job analyzers do not have permanent units.
    *
    * @param pop          If the analyzer stores units dynamically as they are modified, these will be returned too 
    * @return             The vector of UnitInterface objects of this analyzer
    */
    virtual vector<UnitPtr>& getUnits(bool pop=false) override	{
        if(pop) {
161
162
            this->_baseUnits.clear();
            this->_units.clear();
163
164
165
166
167
            unordered_set<string> unitSet;
            U_Ptr u;
            while(_jobUnitsQueue.pop(u))
                if(unitSet.insert(u->getName()))
                    addUnit(u);
168
            return this->_baseUnits;
169
170
171
        } else
            return _dummyBaseUnits;
    }
172
    
173
174
175
176
177
178
179
    /**
    * @brief              Initializes this analyzer
    *
    * @param io           Boost ASIO service to be used
    */
    virtual void init(boost::asio::io_service& io) override { 
        AnalyzerInterface::init(io); 
180
        _jobUnitsQueue.reset(new boost::lockfree::spsc_queue<U_Ptr>(this->_unitCacheLimit));
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    }

    /**
    * @brief              Performs an on-demand compute task
    *
    *                     Unlike the protected computeAsync and compute methods, computeOnDemand allows to interactively
    *                     perform data analytics queries on the analyzer, which must have the _streaming attribute set
    *                     to false. A unit is generated on the fly, corresponding to the input node given as input,
    *                     and results are returned in the form of a map.
    *
    * @param node         Unit name for which the query must be performed
    * @return             a map<string, reading_t> containing the output of the query
    */
    virtual map<string, reading_t> computeOnDemand(const string& node="__root__") override {
        map<string, reading_t> outMap;
196
        if( !this->_streaming ) {
197
198
            try {
                // Getting exclusive access to the analyzer
199
                while( this->_onDemandLock.exchange(true) ) {}
200
                uint32_t jobId = MQTTChecker::topicToJob(node);
201
                vector<qeJobData>* buf = this->_queryEngine.queryJob(jobId, 0, 0, _jobDataVec, true, false);
202
203
204
205
206
207
208
209
210
211
                if(buf) _jobDataVec = buf;
                if(buf && !buf->empty()) {
                    U_Ptr jobUnit = jobDataToUnit(buf[0]);

                    compute(jobUnit);
                    for (const auto &o : jobUnit->getOutputs()) {
                        outMap.insert(make_pair(o->getName(), o->getLatestValue()));
                        o->clearReadingQueue();
                    }
                } else
212
                    throw std::runtime_error("Analyzer " + this->_name + ": cannot retrieve job data!");
213
            } catch(const exception& e) {
214
                this->_onDemandLock.store(false);
215
216
                throw;
            }
217
218
            this->_onDemandLock.store(false);
        } else if( this->_keepRunning ) {
219
220
            bool found = false;
            while( _mapAccess.exchange(true) ) {}
221
            for(const auto& kv : this->_unitCache)
222
223
224
225
226
227
228
229
                if(kv.first == node) {
                    found = true;
                    for(const auto& o : kv.second->getBaseOutputs())
                        outMap.insert(make_pair(o->getName(), o->getLatestValue()));
                }
            _mapAccess.store(false);

            if(!found)
230
                throw std::domain_error("Job " + node + " does not belong to the domain of " + this->_name + "!");
231
        } else
232
            throw std::runtime_error("Analyzer " + this->_name + ": not available for on-demand query!");
233
234
        return outMap;
    }
235
    
236
protected:
237
    
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    /**
     * @brief           This method encapsulates all logic to generate and manage job units
     * 
     *                  The algorithm implemented in this method is very similar to that used in computeOnDemand in
     *                  AnalyzerTemplate, and it is used to manage job units both in on-demand and streaming mode. The
     *                  internal unit cache is used to store recent job units. Moreover, the job data returned by the
     *                  QueryEngine is converted to a format compatible with the UnitGenerator.
     * 
     * @param jobData   a qeJobData struct containing job information
     * @return          A shared pointer to a job unit object
     */
    virtual U_Ptr jobDataToUnit(qeJobData& jobData) {
        string jobTopic = MQTTChecker::jobToTopic(jobData.jobId);
        U_Ptr jobUnit = nullptr;
252
253
        if(!this->_unitCache)
            throw std::runtime_error("Initialization error in analyzer " + this->_name + "!");
254

255
256
257
        if (this->_unitCache->count(jobTopic)) {
            jobUnit = this->_unitCache->at(jobTopic);
            LOG(debug) << "Analyzer " << this->_name << ": cache hit for unit " << jobTopic << ".";
258
259
            
        } else {
260
261
262
263
264
            if (!this->_unitCache->count(SensorNavigator::templateKey))
                throw std::runtime_error("No template unit in analyzer " + this->_name + "!");
            LOG(debug) << "Analyzer " << this->_name << ": cache miss for unit " << jobTopic << ".";
            U_Ptr uTemplate = this->_unitCache->at(SensorNavigator::templateKey);
            shared_ptr<SensorNavigator> navi = this->_queryEngine.getNavigator();
265
266
267
268
            UnitGenerator<S> unitGen(navi);
            vector<string> nodes;
            for (const auto &n : jobData.nodes)
                nodes.push_back(translateNodeName(n));
269
            jobUnit = unitGen.generateJobUnit(jobTopic, nodes, uTemplate->getInputs(), uTemplate->getOutputs(), uTemplate->getInputMode(), jobTopic, this->_relaxed);
270
271
272
273

            // Initializing sensors if necessary
            for (const auto s : jobUnit->getOutputs())
                if (!s->isInit())
274
                    s->initSensor(this->_cacheSize);
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

            // Spinlock to regulate access to the internal unit map - normally innocuous
            while( _mapAccess.exchange(true) ) {}
            addToUnitCache(jobUnit);
            _mapAccess.store(false);
        }
        return jobUnit;
    }
    
    /**
     * @brief             Translates a node name as returned by the resource manager to an internal representation
     * 
     *                    The external node name is usually just the hostname associated to the machine. This 
     *                    representation usually needs to be converted to an internal one that reflects the hierarchy
     *                    described by the sensor navigator. Since this logic is sytem-dependent, users can freely
     *                    override this method.
     * 
     * @param n           Raw node hostname
     * @return            Converted sensor navigator-friendly node name
     */
    virtual string translateNodeName(string n) { return n; }
    
    /**
    * @brief              Performs a compute task
    *
    *                     This method is tasked with scheduling the next compute task, and invoking the internal
    *                     compute() method, which encapsulates the real logic of the analyzer. The compute method
    *                     is automatically called over units as required by the Analyzer's configuration.
    *                     
    *                     In the case of job analyzers, this method will also automatically retrieve the list of jobs
    *                     that were running in the last interval. One unit for each of them is instantiated (or 
    *                     retrieved from the local unit cache, if available) and then the compute phase starts.
    *
    */
    virtual void computeAsync() override {
310
311
312
313
        if(this->_delayInterval > 0) {
            sleep(this->_delayInterval);
            this->_delayInterval = 0;
            LOG(info) << "Analyzer " + this->_name + ": starting computation after delayed start!";
314
315
316
        }

        try {
317
            vector<qeJobData>* buf = this->_queryEngine.queryJob(0, this->_interval * 1000000, 0, _jobDataVec, true, true);
318
319
320
321
322
323
324
325
326
            if(buf) {
                _jobDataVec = buf;
                for(const auto& job : *_jobDataVec) {
                    U_Ptr jobUnit = jobDataToUnit(job);
                    compute(jobUnit);
                    _jobUnitsQueue->push(jobUnit);
                }
            }
            else
327
                LOG(error) << "Analyzer " + this->_name + ": cannot retrieve job data!";
328
        } catch(const exception& e) {
329
            LOG(error) << "Analyzer " + this->_name + ": internal error " + e.what() + " during computation!";
330
331
        }

332
333
334
335
        if (this->_timer && this->_keepRunning) {
            this->_timer->expires_at(timestamp2ptime(this->nextReadingTime()));
            this->_pendingTasks++;
            this->_timer->async_wait(bind(&JobAnalyzerTemplate::computeAsync, this));
336
        }
337
        this->_pendingTasks--;
338
    }
339
    
340
341
342
343
344
345
346
347
348
    // Queue of recently-modified units that is periodically emptied when messages are pushed
    std::unique_ptr<boost::lockfree::spsc_queue<U_Ptr>> _jobUnitsQueue;
    // Spinlock used to regulate access to the internal units map, for "visualization" purposes
    atomic<bool> _mapAccess;
    // Dummy vector used to hide dynamic units in getUnits, while avoiding heap allocations
    // It is quite ugly, but it is also the most convenient way to achieve this
    vector<UnitPtr> _dummyBaseUnits;
    // Vector of job data structures used to retrieve job data at runtime
    vector<qeJobData>* _jobDataVec;
349
350
    // Logger object
    boost::log::sources::severity_logger<boost::log::trivial::severity_level> lg;
351
352
353
354
355
    

};

#endif //PROJECT_JOBANALYZERTEMPLATE_H