sensordatastore.cpp 17.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
//================================================================================
// Name        : sensordatastore.cpp
// Author      : Axel Auweter
// Copyright   : Leibniz Supercomputing Centre
// Description : C++ API implementation for inserting and querying DCDB sensor data.
//================================================================================

//================================================================================
// This file is part of DCDB (DataCenter DataBase)
// Copyright (C) 2011-2016 Leibniz Supercomputing Centre
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
//================================================================================
26

27
28
/**
 * @mainpage
Michael Ott's avatar
Michael Ott committed
29
 * The libdcdb library is a dynamic runtime library providing
30
31
32
33
 * functions to initialize and access the DCDB data store. It
 * is being used by the CollectAgent to handle insertion of
 * data and can be used by tools responsible for data analysis.
 *
34
35
36
 * Its main class is the DCDB::SensorDataStore class which
 * provides functions to connect to the data store, initialize
 * an empty data base and to retrieve data.
37
 *
38
39
40
41
 * For its internal handling, DCDB::SensorDataStore relies on
 * the DCDB::SensorDataStoreImpl class (which hides all private
 * member functions belonging to the SensorDataStore class from
 * the header that is used by programmers who link against this
42
43
44
45
 * library). Raw database functionality is abstracted into the
 * CassandraBackend class (to easy switching to other
 * key-value style databases in the future).
 *
46
 * To use the library in your client application, simply
47
48
49
50
 * include the sensordatastore.h header file and initialize
 * an object of the SensorDataStore class.
 */

Axel Auweter's avatar
Axel Auweter committed
51
52
#include <string>
#include <iostream>
53
54
#include <cstdint>
#include <cinttypes>
Axel Auweter's avatar
Axel Auweter committed
55

56
#include "cassandra.h"
Axel Auweter's avatar
Axel Auweter committed
57

58
#include "dcdb/sensordatastore.h"
59
#include "sensordatastore_internal.h"
60
#include "dcdb/connection.h"
61
62
63
#include "dcdbglobals.h"

#include "dcdbendian.h"
64

65
66
using namespace DCDB;

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/**
 * @details
 * Since we want high-performance inserts, we prepare the
 * insert CQL query in advance and only bind it on the actual
 * insert.
 */
void SensorDataStoreImpl::prepareInsert(uint64_t ttl)
{
  CassError rc = CASS_OK;
  CassFuture* future = NULL;
  const char* query;

  /*
   * Free the old prepared if necessary.
   */
  if (preparedInsert) {
      cass_prepared_free(preparedInsert);
  }

  char *queryBuf = NULL;
  if (ttl == 0) {
      query = "INSERT INTO dcdb.sensordata (sid, ts, value) VALUES (?, ?, ?);";
  }
  else {
      queryBuf = (char*)malloc(256);
      snprintf(queryBuf, 256, "INSERT INTO dcdb.sensordata (sid, ts, value) VALUES (?, ?, ?) USING TTL %" PRIu64 " ;", ttl);
      query = queryBuf;
  }

  future = cass_session_prepare(session, query);
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
      connection->printError(future);
  } else {
      preparedInsert = cass_future_get_prepared(future);
  }

  cass_future_free(future);
  if (queryBuf) {
      free(queryBuf);
  }
}

112
113
114
115
116
117
118
119
120
121
122
123
124
125
/**
 * @details
 * To insert a sensor reading, the Rsvd field of the SensorId must
 * be filled with a time component that ensures that the maximum
 * number of 2^32 columns per key is not exceeded while still
 * allowing relatively easy retrieval of data.
 *
 * We achieve this by using a "week-stamp" (i.e. number of weeks
 * since Unix epoch) within the Rsvd field of the SensorId before
 * calling the Cassandra Backend to do the raw insert.
 *
 * Applications should not call this function directly, but
 * use the insert function provided by the SensorDataStore class.
 */
126
void SensorDataStoreImpl::insert(SensorId* sid, uint64_t ts, int64_t value)
127
{
128
#if 0
129
130
131
  std::cout << "Inserting@SensorDataStoreImpl (" << sid->raw[0] << " " << sid->raw[1] << ", " << ts << ", " << value << ")" << std::endl;
#endif

132
  /* Calculate and insert week number */
133
  uint16_t week = ts / 604800000000000;
Axel Auweter's avatar
Axel Auweter committed
134
  sid->setRsvd(week);
135
136

  /* Insert into Cassandra */
137
  const std::string key = sid->serialize();
138
139
140
141
142
143
144
145
146
147

  CassError rc = CASS_OK;
  CassStatement* statement = NULL;
  CassFuture *future = NULL;

  statement = cass_prepared_bind(preparedInsert);

  cass_statement_bind_bytes_by_name(statement, "sid", (cass_byte_t*)(key.c_str()), 16);
  cass_statement_bind_int64_by_name(statement, "ts", ts);
  cass_statement_bind_int64_by_name(statement, "value", value);
148
  
149
150
151
152
153
154
155
156
157
158
  future = cass_session_execute(session, statement);
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
      connection->printError(future);
  }

  cass_future_free(future);
  cass_statement_free(statement);
159
160
}

161
162
/**
 * @details
163
164
 * This function updates the prepared statement for inserts
 * with the new TTL value.
165
 */
166
void SensorDataStoreImpl::setTTL(uint64_t ttl)
167
{
168
  prepareInsert(ttl);
169
170
}

Axel Auweter's avatar
Axel Auweter committed
171
172
173
174
/**
 * @details
 * This function issues a regular query to the data store
 * and creates a SensorDataStoreReading object for each
175
 * entry which is stored in the result list.
Axel Auweter's avatar
Axel Auweter committed
176
 */
177
void SensorDataStoreImpl::query(std::list<SensorDataStoreReading>& result, SensorId& sid, TimeStamp& start, TimeStamp& end, QueryAggregate aggregate)
Axel Auweter's avatar
Axel Auweter committed
178
179
180
181
182
{
  CassError rc = CASS_OK;
  CassStatement* statement = NULL;
  CassFuture *future = NULL;
  const CassPrepared* prepared = nullptr;
183
184
185
186
187
188
189
190
191
  
  std::string query = std::string("SELECT ts,");
  if (aggregate == AGGREGATE_NONE) {
    query.append("value");
  } else {
    query.append(AggregateString[aggregate] + std::string("(value) as value"));
  }
  query.append(" FROM " KEYSPACE_NAME "." CF_SENSORDATA " WHERE sid = ? AND ts >= ? AND ts <= ? ;");
  future = cass_session_prepare(session, query.c_str());
Axel Auweter's avatar
Axel Auweter committed
192
193
194
195
196
197
198
199
200
201
202
203
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
    connection->printError(future);
    cass_future_free(future);
    return;
  }

  prepared = cass_future_get_prepared(future);
  cass_future_free(future);

204
  const std::string key = sid.serialize();
Axel Auweter's avatar
Axel Auweter committed
205

206
#if 0
207
  std::cout << "Query: " << query << std::endl << "sid: " << sid.toString() << " ts1: " << start.getRaw() << " ts2: " << end.getRaw() << std::endl;
208
#endif
209

Axel Auweter's avatar
Axel Auweter committed
210
211
212
213
214
215
216
217
218
219
220
221
  statement = cass_prepared_bind(prepared);
  cass_statement_bind_bytes(statement, 0, (const cass_byte_t*)(key.c_str()), 16);
  cass_statement_bind_int64(statement, 1, start.getRaw());
  cass_statement_bind_int64(statement, 2, end.getRaw());

  future = cass_session_execute(session, statement);
  cass_future_wait(future);

  if (cass_future_error_code(future) == CASS_OK) {
      const CassResult* cresult = cass_future_get_result(future);
      CassIterator* rows = cass_iterator_from_result(cresult);

222
223
      SensorDataStoreReading entry;

Axel Auweter's avatar
Axel Auweter committed
224
225
226
227
228
229
230
231
      while (cass_iterator_next(rows)) {
          const CassRow* row = cass_iterator_get_row(rows);

          cass_int64_t ts, value;
          cass_value_get_int64(cass_row_get_column_by_name(row, "ts"), &ts);
          cass_value_get_int64(cass_row_get_column_by_name(row, "value"), &value);

          entry.sensorId = sid;
232
          entry.timeStamp = (uint64_t)ts;
233
          entry.value = (int64_t)value;
Axel Auweter's avatar
Axel Auweter committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

          result.push_back(entry);
#if 0
          if (localtime) {
              t.convertToLocal();
          }
          if (raw) {
              std::cout << sensorName << "," << std::dec << t.getRaw() << "," << std::dec << value << std::endl;
          }
          else {
              std::cout << sensorName << "," << t.getString() << "," << std::dec << value << std::endl;
          }
#endif
      }
      cass_iterator_free(rows);
      cass_result_free(cresult);
  }

  cass_statement_free(statement);
  cass_future_free(future);
  cass_prepared_free(prepared);
}

257
258
259
260
261
/**
 * @details
 * This function issues a regular query to the data store
 * and calls cbFunc for every reading.
 */
262
void SensorDataStoreImpl::queryCB(SensorDataStore::QueryCbFunc cbFunc, void* userData, SensorId& sid, TimeStamp& start, TimeStamp& end, QueryAggregate aggregate)
263
264
265
266
267
{
  CassError rc = CASS_OK;
  CassStatement* statement = NULL;
  CassFuture *future = NULL;
  const CassPrepared* prepared = nullptr;
268
269
270
271
272
273
274
275
276
  
  std::string query = std::string("SELECT ts,");
  if (aggregate == AGGREGATE_NONE) {
    query.append("value");
  } else {
    query.append(AggregateString[aggregate] + std::string("(value) as value"));
  }
  query.append(" FROM " KEYSPACE_NAME "." CF_SENSORDATA " WHERE sid = ? AND ts >= ? AND ts <= ? ;");
  future = cass_session_prepare(session, query.c_str());
277
278
279
280
281
282
283
284
285
286
287
288
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
    connection->printError(future);
    cass_future_free(future);
    return;
  }

  prepared = cass_future_get_prepared(future);
  cass_future_free(future);

289
  const std::string key = sid.serialize();
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

  statement = cass_prepared_bind(prepared);
  cass_statement_bind_bytes(statement, 0, (const cass_byte_t*)(key.c_str()), 16);
  cass_statement_bind_int64(statement, 1, start.getRaw());
  cass_statement_bind_int64(statement, 2, end.getRaw());

  future = cass_session_execute(session, statement);
  cass_future_wait(future);

  if (cass_future_error_code(future) == CASS_OK) {
      const CassResult* cresult = cass_future_get_result(future);
      CassIterator* rows = cass_iterator_from_result(cresult);

      SensorDataStoreReading entry;

      while (cass_iterator_next(rows)) {
          const CassRow* row = cass_iterator_get_row(rows);

          cass_int64_t ts, value;
          cass_value_get_int64(cass_row_get_column_by_name(row, "ts"), &ts);
          cass_value_get_int64(cass_row_get_column_by_name(row, "value"), &value);

          entry.sensorId = sid;
          entry.timeStamp = (uint64_t)ts;
          entry.value = (int64_t)value;

          cbFunc(entry, userData);
      }
      cass_iterator_free(rows);
      cass_result_free(cresult);
  }

  cass_statement_free(statement);
  cass_future_free(future);
  cass_prepared_free(prepared);
}

327
328
329
330
331
332
/**
 * @details
 * This function generates an integrated value of the time series
 * by first querying for the result set list using query() and then
 * summing up the result.
 */
333
SDSQueryResult SensorDataStoreImpl::querySum(int64_t& result, SensorId& sid, TimeStamp& start, TimeStamp& end)
334
335
336
337
{
  std::list<SensorDataStoreReading> queryResult;

  /* Issue a standard query */
338
  query(queryResult, sid, start, end, AGGREGATE_NONE);
339

Axel Auweter's avatar
Axel Auweter committed
340
341
342
343
  /* Check if at least 2 readings in result */
  if (queryResult.size() < 2)
    return SDS_EMPTYSET;

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
  /* Integrate the result */
  result = 0;

  SensorDataStoreReading prev;
  for (std::list<SensorDataStoreReading>::iterator it = queryResult.begin(); it != queryResult.end(); it++) {
      if (!(it == queryResult.begin())) {
          SensorDataStoreReading cur = *it;

          /* Calculate average between two readings */
          int64_t avg = (cur.value + prev.value) / 2;

          /* Calculate time difference */
          uint64_t dt = cur.timeStamp.getRaw() - prev.timeStamp.getRaw();

          /* Sum up (with lousy attempt to keep it numerically stable - should probably use double instead) */
          if (dt > 10000000000) {
              /* dt > 10s => convert dt to s first */
              dt /= 1000000000;
              result += avg * dt;
          }
          else {
              /* dt < 10s => multiply first */
              avg *= dt;
              result += avg / 1000000000;
          }
      }
      prev = *it;
  }
Axel Auweter's avatar
Axel Auweter committed
372
  return SDS_OK;
373
374
}

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/**
 * @details
 * This function deletes all data from the sensordata store
 * that is older than weekStamp-1 weeks.
 */
void SensorDataStoreImpl::truncBeforeWeek(uint16_t weekStamp)
{
  /* List of rows that should be deleted */
  std::list<SensorId> deleteList;

  /* Query the database to collect all rows */
  CassError rc = CASS_OK;
  CassStatement* statement = nullptr;
  CassFuture* future = nullptr;
  const char* query = "SELECT DISTINCT sid FROM " KEYSPACE_NAME "." CF_SENSORDATA ";";

  statement = cass_statement_new(query, 0);
  future = cass_session_execute(session, statement);
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
      connection->printError(future);
      return;
  }

  const CassResult* result = cass_future_get_result(future);
  cass_future_free(future);

  CassIterator* iterator = cass_iterator_from_result(result);

  /* Iterate over all rows and filter out those, that are too old */
  while (cass_iterator_next(iterator)) {
      const CassRow* row = cass_iterator_get_row(iterator);
      const cass_byte_t* res;
      size_t       res_len;
      cass_value_get_bytes(cass_row_get_column_by_name(row, "sid"), &res, &res_len);

      uint64_t raw[2];
      raw[0] = Endian::BEToHost(((uint64_t*)res)[0]);
      raw[1] = Endian::BEToHost(((uint64_t*)res)[1]);

      SensorId sensor;
      sensor.setRaw(raw);

      /* Check if the sensorId's rsvd field is smaller than the weekStamp */
      if (sensor.getRsvd() < weekStamp) {
          deleteList.push_back(sensor);
      }
  }
  cass_result_free(result);
  cass_iterator_free(iterator);
  cass_statement_free(statement);

  /* Now iterate over all entries in the deleteList and delete them */
  for (std::list<SensorId>::iterator it = deleteList.begin(); it != deleteList.end(); it++) {
      deleteRow(*it);
  }
}

/**
 * @details
 * Deleting entire rows is rather efficient compared to deleting individual columns.
 */
void SensorDataStoreImpl::deleteRow(SensorId& sid)
{
  CassError rc = CASS_OK;
  CassStatement* statement = NULL;
  CassFuture *future = NULL;
  const CassPrepared* prepared = nullptr;
  const char* query = "DELETE FROM " KEYSPACE_NAME "." CF_SENSORDATA " WHERE sid = ?;";

  future = cass_session_prepare(session, query);
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
    connection->printError(future);
    cass_future_free(future);
    return;
  }

  prepared = cass_future_get_prepared(future);
  cass_future_free(future);

460
  const std::string key = sid.serialize();
461
462
463
464
465
466
467
468
469
470
471
472

  statement = cass_prepared_bind(prepared);
  cass_statement_bind_bytes(statement, 0, (const cass_byte_t*)(key.c_str()), 16);

  future = cass_session_execute(session, statement);
  cass_future_wait(future);

  cass_statement_free(statement);
  cass_future_free(future);
  cass_prepared_free(prepared);
}

473
474
/**
 * @details
475
 * This constructor sets the internal connection variable to
476
 * the externally provided Connection object and also
477
 * retrieves the CassSession pointer of the connection.
478
 */
479
SensorDataStoreImpl::SensorDataStoreImpl(Connection* conn)
480
{
481
482
  connection = conn;
  session = connection->getSessionHandle();
Axel Auweter's avatar
Axel Auweter committed
483
484
485

  preparedInsert = nullptr;
  prepareInsert(0);
486
487
}

488
489
/**
 * @details
490
 * Due to the simplicity of the class, the destructor is left empty.
491
 */
492
SensorDataStoreImpl::~SensorDataStoreImpl()
493
{
494
  connection = nullptr;
Axel Auweter's avatar
Axel Auweter committed
495
496
497
498
  session = nullptr;
  if (preparedInsert) {
      cass_prepared_free(preparedInsert);
  }
499
500
}

501
502
503
504
505
506
/**
 * @details
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
 */
507
void SensorDataStore::insert(SensorId* sid, uint64_t ts, int64_t value)
508
509
510
511
{
    impl->insert(sid, ts, value);
}

512
513
/**
 * @details
514
515
516
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
517
 */
518
void SensorDataStore::setTTL(uint64_t ttl)
519
{
520
    impl->setTTL(ttl);
521
522
}

Axel Auweter's avatar
Axel Auweter committed
523
524
525
526
527
528
/**
 * @details
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
 */
529
void SensorDataStore::query(std::list<SensorDataStoreReading>& result, SensorId& sid, TimeStamp& start, TimeStamp& end, QueryAggregate aggregate)
Axel Auweter's avatar
Axel Auweter committed
530
{
531
    impl->query(result, sid, start, end, aggregate);
Axel Auweter's avatar
Axel Auweter committed
532
533
}

534
535
536
537
538
539
/**
 * @details
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
 */
540
void SensorDataStore::queryCB(SensorDataStore::QueryCbFunc cbFunc, void* userData, SensorId& sid, TimeStamp& start, TimeStamp& end, QueryAggregate aggregate)
541
{
542
    return impl->queryCB(cbFunc, userData, sid, start, end, aggregate);
543
544
}

545
546
547
548
549
550
/**
 * @details
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
 */
551
SDSQueryResult SensorDataStore::querySum(int64_t& result, SensorId& sid, TimeStamp& start, TimeStamp& end)
552
{
Axel Auweter's avatar
Axel Auweter committed
553
    return impl->querySum(result, sid, start, end);
554
555
}

556
557
558
559
560
561
562
563
564
565
566
/**
 * @details
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
 */
void SensorDataStore::truncBeforeWeek(uint16_t weekStamp)
{
    return impl->truncBeforeWeek(weekStamp);
}

567
568
/**
 * @details
569
570
 * This constructor allocates the implementation class which
 * holds the actual implementation of the class functionality.
571
 */
572
SensorDataStore::SensorDataStore(Connection* conn)
573
{
574
    impl = new SensorDataStoreImpl(conn);
575
576
}

577
578
579
580
581
/**
 * @details
 * The SensorDataStore desctructor deallocates the
 * SensorDataStoreImpl and CassandraBackend objects.
 */
582
583
SensorDataStore::~SensorDataStore()
{
584
585
586
  /* Clean up... */
  if (impl)
    delete impl;
587
}