PerSystSqlOperator.cpp 11.7 KB
Newer Older
1
//================================================================================
2
// Name        : PerSystSqlOperator.cpp
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// Author      : Carla Guillen
// Contact     : info@dcdb.it
// Copyright   : Leibniz Supercomputing Centre
// Description : Template implementing features to use Units in Operators.
//================================================================================

//================================================================================
// This file is part of DCDB (DataCenter DataBase)
// Copyright (C) 2018-2019 Leibniz Supercomputing Centre
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
//================================================================================

28
29
#include "PerSystSqlOperator.h"

30
31
32
33
34
#include <boost/log/sources/record_ostream.hpp>
#include <boost/log/trivial.hpp>
#include <boost/log/utility/formatting_ostream.hpp>
#include <boost/parameter/keyword.hpp>
#include <stddef.h>
35
#include <cmath>
36
#include <cstdint>
37
#include <memory>
38
#include <string>
39
#include <numeric>
Carla Guillen's avatar
Carla Guillen committed
40
#include <sstream>
41
42

#include "../../../common/include/logging.h"
43
#include "../../../common/include/sensorbase.h"
44
45
46
#include "../../../common/include/timestamp.h"
#include "../../includes/CommonStatistics.h"
#include "../../includes/QueryEngine.h"
47
#include "../../includes/UnitTemplate.h"
48

Carla Guillen's avatar
Carla Guillen committed
49
int PerSystSqlOperator::_number_of_calls = 0;
Carla Guillen's avatar
Carla Guillen committed
50
PerSystDB PerSystSqlOperator::persystdb;
Carla Guillen's avatar
Carla Guillen committed
51

52
PerSystSqlOperator::PerSystSqlOperator(const std::string& name) :
Carla Guillen's avatar
Carla Guillen committed
53
54
55
		OperatorTemplate(name), JobOperatorTemplate(name), _number_of_even_quantiles(
				0), _severity_formula(NOFORMULA), _severity_threshold(0), _severity_exponent(
				0), _severity_max_memory(0), _go_back_ns(0), _backend(DEFAULT), _scaling_factor(
Carla Guillen's avatar
Carla Guillen committed
56
				1), _property_id(0) {
57
58
}

59
PerSystSqlOperator::~PerSystSqlOperator() {
60
61
}

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
void PerSystSqlOperator::printConfig(LOG_LEVEL ll) {
	LOG_VAR(ll) << "backend=" << _backend;
	LOG_VAR(ll) << "go_back_ms=" << _go_back_ns/1e6;
	if(_backend == MARIADB){
		LOG_VAR(ll) << "PerSystSQL Operator Connection information:";
		LOG_VAR(ll) << "\tHost=" << _conn.host;
		LOG_VAR(ll) << "\tUser=" << _conn.user;
		LOG_VAR(ll) << "\tDatabase=" << _conn.database_name;
		LOG_VAR(ll) << "\tPort=" << _conn.port;
		LOG_VAR(ll) << "\tRotation=" << _conn.rotation;
		LOG_VAR(ll) << "\tEvery_X_days=" << _conn.every_x_days;
	}
	LOG_VAR(ll) << "Property Configuration:";
	LOG_VAR(ll) << "\tnumber_of_even_quantiles=" << _number_of_even_quantiles;
	LOG_VAR(ll) << "\tproperty_id=" << _property_id;
	LOG_VAR(ll) << "\tscaling_factor=" << _scaling_factor;
	LOG_VAR(ll) << "Severity Configuration:";
	LOG_VAR(ll) << "\tseverity_formula=" << _severity_formula;
	LOG_VAR(ll) << "\tseverity_exponent=" << _severity_exponent;
	LOG_VAR(ll) << "\tseverity_threshold=" << _severity_threshold;
	LOG_VAR(ll) << "\tseverity_max_memory=" << _severity_max_memory;
}

85
void PerSystSqlOperator::compute(U_Ptr unit, qeJobData& jobData) {
Carla Guillen's avatar
Carla Guillen committed
86
	// Clearing the buffer, if already allocated
87
	_buffer.clear();
Carla Guillen's avatar
Carla Guillen committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
	size_t elCtr = 0;
	uint64_t my_timestamp = getTimestamp() - _go_back_ns;
	// Making sure that the aggregation boundaries do not go past the job start/end time
	uint64_t jobEnd =
			jobData.endTime != 0 && my_timestamp > jobData.endTime ?
					jobData.endTime : my_timestamp;
	uint64_t jobStart =
			jobEnd - my_timestamp < jobData.startTime ?
					jobData.startTime : jobEnd - my_timestamp;
	// Job units are hierarchical, and thus we iterate over all sub-units associated to each single node
	for (const auto& subUnit : unit->getSubUnits()) {
		// Getting the most recent values as specified in _window
		// Since we do not clear the internal buffer, all sensor readings will be accumulated in the same vector
		for (const auto& in : subUnit->getInputs()) {
			if (!_queryEngine.querySensor(in->getName(), my_timestamp,
					my_timestamp, _buffer, false)) {
				LOG(debug)<< "PerSystSql Operator " << _name << " cannot read from sensor " << in->getName() << "!";
				return;
			}
		}
	}
	static bool persystdb_initialized = false;
110
	if ( _backend == MARIADB && !persystdb_initialized) {
Carla Guillen's avatar
Carla Guillen committed
111
112
113
114
115
116
117
118
		bool persystdb_initialized = persystdb.initializeConnection(_conn.host, _conn.user, _conn.password, _conn.database_name, _conn.rotation, _conn.port, _conn.every_x_days);
		if(!persystdb_initialized) {
			LOG(error) << "Unable to establish connection to database";
			return;
		}
	}
	Aggregate_info_t agg_info;
	std::string table_suffix;
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
	if(_backend == MARIADB){
		std::stringstream jobidBuilder;
		jobidBuilder << jobData.jobId;

		std::vector<std::string> job_ids;
		job_ids.push_back(jobidBuilder.str());

		std::map<std::string, std::string> job_map;
    		if(!persystdb.getTableSuffix(table_suffix)){
       		 	LOG(error) << "failed to create table!";
       		 	return;
    		}
    		if(!persystdb.getDBJobIDs(job_ids, job_map)){
       			return;
    		}

    		// handle jobs which are not present
   		 for(auto &job_id_string : job_ids ){
       	 		auto search = job_map.find(job_id_string);
        		if(search == job_map.end()){ //Not found
               		 	int job_id_db;
                		if(persystdb.insertIntoJob(job_id_string, jobData.userId, job_id_db, table_suffix)){
					agg_info.job_id_db = std::to_string(job_id_db); 
                		} else {
                       		 	continue;
                		}
        		}
   		}
		agg_info.timestamp = (my_timestamp/1e9);
 	}
149

Carla Guillen's avatar
Carla Guillen committed
150
151
	compute_internal(unit, _buffer, agg_info);

152
153
154
155
156
157
158
 	if(_backend == MARIADB){
		persystdb.insertInAggregateTable(table_suffix, agg_info);
		if(_number_of_calls % 10 == 0  && persystdb_initialized){
			persystdb.finalizeConnection();
			persystdb_initialized = false;
		}
		_number_of_calls++;
Carla Guillen's avatar
Carla Guillen committed
159
	}
160
161
}

Carla Guillen's avatar
Carla Guillen committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
void PerSystSqlOperator::compute_internal(U_Ptr& unit,
		vector<reading_t>& buffer, Aggregate_info_t & agg_info) {
	_quantileSensors.clear();

	reading_t reading;
	AggregatorSensorBase::aggregationOps_t op;
	reading.timestamp = getTimestamp() - _go_back_ns;

	std::vector<double> douBuffer;
	punToDoubles(buffer, douBuffer);
	// Performing the actual aggregation operation
	for (const auto& out : unit->getOutputs()) {
		op = out->getOperation();
		if (op != AggregatorSensorBase::QTL) {
			switch (op) {
			case AggregatorSensorBase::AVG:
				if (_backend == CASSANDRA) {
					reading.value = std::accumulate(douBuffer.begin(),
							douBuffer.end(), 0.0) / douBuffer.size()
							* _scaling_factor;
				} else {
					agg_info.average = std::accumulate(douBuffer.begin(), douBuffer.end(), 0.0) / douBuffer.size();
				}
				break;
			case AggregatorSensorBase::OBS:
				reading.value = computeObs(buffer);
				agg_info.num_of_observations = computeObs(buffer);
				break;
			case AggregatorSensorBase::AVG_SEV:
				if (_backend == CASSANDRA) {
					reading.value = computeSeverityAverage(douBuffer) * _scaling_factor;
				} else {
					agg_info.severity_average = computeSeverityAverage(douBuffer);
				}
				break;
			default:
				LOG(warning)<< _name << ": Operation " << op << " not supported!";
				reading.value = 0;
				break;
			}
			if(_backend == CASSANDRA) {
				out->storeReading(reading);
			}
		} else {
			_quantileSensors.push_back(out);
		}
	}

	if (!_quantileSensors.empty()) {
		vector<double> quantiles;
		computeEvenQuantiles(douBuffer, _number_of_even_quantiles, quantiles);
		if (_backend == CASSANDRA) {
			for (unsigned idx = 0; idx < quantiles.size(); idx++) {
				reading.value = quantiles[idx]*_scaling_factor;
				_quantileSensors[idx]->storeReading(reading);
			}
		} else {
			for(auto q: quantiles){
				agg_info.quantiles.push_back(static_cast<float>(q));
			}
		}
	}
	agg_info.property_type_id = _property_id;

}

void PerSystSqlOperator::compute(U_Ptr unit) {
229
230
//nothing here!
}
Carla Guillen Carias's avatar
Carla Guillen Carias committed
231

Carla Guillen's avatar
Carla Guillen committed
232
double severity_formula1(double metric, double threshold, double exponent) {
233
	double val = metric - threshold;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
234
	if (val > 0) {
235
		double ret = (pow(val, exponent));
Carla Guillen's avatar
Carla Guillen committed
236
		if (ret > 1) {
Carla Guillen Carias's avatar
Carla Guillen Carias committed
237
238
239
240
241
242
243
			return 1;
		}
		return ret;
	}
	return 0;
}

Carla Guillen's avatar
Carla Guillen committed
244
245
double severity_formula2(double metric, double threshold, double exponent) {
	if (!threshold) {
Carla Guillen Carias's avatar
Carla Guillen Carias committed
246
247
		return -1;
	}
248
	double val = metric / threshold - 1;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
249
	if (val > 0) {
Carla Guillen's avatar
Carla Guillen committed
250
251
		double ret = (pow(val, exponent));
		if (ret > 1) {
Carla Guillen Carias's avatar
Carla Guillen Carias committed
252
253
254
255
256
257
258
			return 1;
		}
		return ret;
	}
	return 0;
}

Carla Guillen's avatar
Carla Guillen committed
259
double severity_formula3(double metric, double threshold, double exponent) {
Carla Guillen Carias's avatar
Carla Guillen Carias committed
260
261
262
	if (!threshold) {
		return -1;
	}
263
	double val = metric / threshold;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
264
	if (val > 0) {
Carla Guillen's avatar
Carla Guillen committed
265
266
		double ret = (1 - pow(val, exponent));
		if (ret > 1) {
Carla Guillen Carias's avatar
Carla Guillen Carias committed
267
268
			return 1;
		}
Carla Guillen's avatar
Carla Guillen committed
269
		if (ret < 0) {
Carla Guillen Carias's avatar
Carla Guillen Carias committed
270
271
272
273
274
275
276
			return 0;
		}
		return ret;
	}
	return 0;
}

Carla Guillen's avatar
Carla Guillen committed
277
double severity_memory(double metric, double threshold, double max_memory) {
278
279
	double denominator = max_memory - threshold;
	double severity = -1;
Carla Guillen's avatar
Carla Guillen committed
280
281
282
	if (denominator) {
		severity = metric - threshold / (max_memory - threshold);
		if (severity > 1) {
Carla Guillen Carias's avatar
Carla Guillen Carias committed
283
			severity = 1;
Carla Guillen's avatar
Carla Guillen committed
284
		} else if (severity < 0) {
Carla Guillen Carias's avatar
Carla Guillen Carias committed
285
286
287
288
289
			severity = 0;
		}
	}
	return severity;
}
290

Carla Guillen's avatar
Carla Guillen committed
291
292
double PerSystSqlOperator::computeSeverityAverage(
		std::vector<double> & buffer) {
293
	std::vector<double> severities;
Carla Guillen's avatar
Carla Guillen committed
294
295
296
297
298
299
300
	switch (_severity_formula) {
	case (FORMULA1):
		for (auto val : buffer) {
			auto severity = severity_formula1(val, _severity_threshold,
					_severity_exponent);
			severities.push_back(severity);
		}
301
		break;
Carla Guillen's avatar
Carla Guillen committed
302
303
304
305
306
307
	case (FORMULA2):
		for (auto val : buffer) {
			auto severity = severity_formula2(val, _severity_threshold,
					_severity_exponent);
			severities.push_back(severity);
		}
308
		break;
Carla Guillen's avatar
Carla Guillen committed
309
310
311
312
313
314
	case (FORMULA3):
		for (auto val : buffer) {
			auto severity = severity_formula3(val, _severity_threshold,
					_severity_exponent);
			severities.push_back(severity);
		}
315
		break;
Carla Guillen's avatar
Carla Guillen committed
316
317
318
319
320
321
	case (MEMORY_FORMULA):
		for (auto val : buffer) {
			auto severity = severity_memory(val, _severity_threshold,
					_severity_max_memory);
			severities.push_back(severity);
		}
322
		break;
Carla Guillen's avatar
Carla Guillen committed
323
324
325
326
327
328
329
	case (NOFORMULA):
		for (auto val : buffer) {
			severities.push_back(severity_noformula());
		}
		break;
	default:
		return 0.0;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
330
		break;
331
	}
Carla Guillen's avatar
Carla Guillen committed
332
333
334
	if (severities.size()) {
		return (std::accumulate(severities.begin(), severities.end(), 0.0)
				/ severities.size());
335
336
	}
	return 0.0;
337
}
338

Carla Guillen's avatar
Carla Guillen committed
339
340
341
void punToDoubles(std::vector<reading_t> & buffer,
		std::vector<double> & outDoubleVec) {
	for (auto & reading : buffer) {
342
343
344
345
		outDoubleVec.push_back(punLLToDouble(reading.value));
	}
}

Carla Guillen's avatar
Carla Guillen committed
346
347
348
349
double punLLToDouble(long long value) {
	double * returnval;
	returnval = (double *) (&value);
	return *returnval;
350
351
}

Carla Guillen's avatar
Carla Guillen committed
352
353
354
long long punDoubleToLL(double value) {
	long long * returnval;
	returnval = (long long *) (&value);
355

Carla Guillen's avatar
Carla Guillen committed
356
	return *returnval;
357
358
}

Carla Guillen's avatar
Carla Guillen committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
void computeEvenQuantiles(std::vector<double> &data,
		const unsigned int NUMBER_QUANTILES, std::vector<double> &quantiles) {
	if (data.empty() || NUMBER_QUANTILES == 0) {
		return;
	}
	std::sort(data.begin(), data.end());
	int elementNumber = data.size();
	quantiles.resize(NUMBER_QUANTILES + 1); //+min
	double factor = elementNumber / static_cast<double>(NUMBER_QUANTILES);
	quantiles[0] = data[0]; //minimum
	quantiles[NUMBER_QUANTILES] = data[data.size() - 1]; //maximum
	for (unsigned int i = 1; i < NUMBER_QUANTILES; i++) {
		if (elementNumber > 1) {
			int idx = static_cast<int>(std::floor(i * factor));
			if (idx == 0) {
				quantiles[i] = data[0];
			} else {
				double rest = (i * factor) - idx;
				quantiles[i] = data[idx - 1]
						+ rest * (data[idx] - data[idx - 1]); //ToDo scaling factor??
			}
		} else { //optimization, we don't need to calculate all the quantiles
			quantiles[i] = data[0];
		}
	}
384
385
}