sensordatastore.cpp 15.6 KB
Newer Older
1
2
3
4
5
6
7
/*
 * sensordatastore.cpp
 *
 *  Created on: Jul 24, 2013
 *      Author: Axel Auweter
 */

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
 * @mainpage
 * The DCDBLib library is a dynamic runtime library providing
 * functions to initialize and access the DCDB data store. It
 * is being used by the CollectAgent to handle insertion of
 * data and can be used by tools responsible for data analysis.
 *
 * Its main class is the SensorDataStore class which provides
 * functions to connect to the data store, initialize an empty
 * data base and to (TODO) retrieve data.
 *
 * For its internal handling, SensorDataStore relies on the
 * SensorDataStoreImpl class (which hides all private member
 * functions belonging to the SensorDataStore class from the
 * header that is used by programmers who link against this
 * library). Raw database functionality is abstracted into the
 * CassandraBackend class (to easy switching to other
 * key-value style databases in the future).
 *
27
 * To use the library in your client application, simply
28
29
30
31
 * include the sensordatastore.h header file and initialize
 * an object of the SensorDataStore class.
 */

Axel Auweter's avatar
Axel Auweter committed
32
33
#include <string>
#include <iostream>
34
35
#include <cstdint>
#include <cinttypes>
Axel Auweter's avatar
Axel Auweter committed
36

37
#include "cassandra.h"
Axel Auweter's avatar
Axel Auweter committed
38

39
#include "sensordatastore.h"
40
#include "sensordatastore_internal.h"
41
42
43
44
#include "connection.h"
#include "dcdbglobals.h"

#include "dcdbendian.h"
45

46
47
using namespace DCDB;

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/**
 * @details
 * Since we want high-performance inserts, we prepare the
 * insert CQL query in advance and only bind it on the actual
 * insert.
 */
void SensorDataStoreImpl::prepareInsert(uint64_t ttl)
{
  CassError rc = CASS_OK;
  CassFuture* future = NULL;
  const char* query;

  /*
   * Free the old prepared if necessary.
   */
  if (preparedInsert) {
      cass_prepared_free(preparedInsert);
  }

  char *queryBuf = NULL;
  if (ttl == 0) {
      query = "INSERT INTO dcdb.sensordata (sid, ts, value) VALUES (?, ?, ?);";
  }
  else {
      queryBuf = (char*)malloc(256);
      snprintf(queryBuf, 256, "INSERT INTO dcdb.sensordata (sid, ts, value) VALUES (?, ?, ?) USING TTL %" PRIu64 " ;", ttl);
      query = queryBuf;
  }

  future = cass_session_prepare(session, query);
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
      connection->printError(future);
  } else {
      preparedInsert = cass_future_get_prepared(future);
  }

  cass_future_free(future);
  if (queryBuf) {
      free(queryBuf);
  }
}

93
94
95
96
97
98
99
100
101
102
103
104
105
106
/**
 * @details
 * To insert a sensor reading, the Rsvd field of the SensorId must
 * be filled with a time component that ensures that the maximum
 * number of 2^32 columns per key is not exceeded while still
 * allowing relatively easy retrieval of data.
 *
 * We achieve this by using a "week-stamp" (i.e. number of weeks
 * since Unix epoch) within the Rsvd field of the SensorId before
 * calling the Cassandra Backend to do the raw insert.
 *
 * Applications should not call this function directly, but
 * use the insert function provided by the SensorDataStore class.
 */
107
void SensorDataStoreImpl::insert(SensorId* sid, uint64_t ts, int64_t value)
108
{
109
#if 0
110
111
112
  std::cout << "Inserting@SensorDataStoreImpl (" << sid->raw[0] << " " << sid->raw[1] << ", " << ts << ", " << value << ")" << std::endl;
#endif

113
  /* Calculate and insert week number */
114
  uint16_t week = ts / 604800000000000;
Axel Auweter's avatar
Axel Auweter committed
115
  sid->setRsvd(week);
116
117

  /* Insert into Cassandra */
Axel Auweter's avatar
Axel Auweter committed
118
  std::string key = sid->serialize();
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

  CassError rc = CASS_OK;
  CassStatement* statement = NULL;
  CassFuture *future = NULL;

  statement = cass_prepared_bind(preparedInsert);

  cass_statement_bind_bytes_by_name(statement, "sid", (cass_byte_t*)(key.c_str()), 16);
  cass_statement_bind_int64_by_name(statement, "ts", ts);
  cass_statement_bind_int64_by_name(statement, "value", value);

  future = cass_session_execute(session, statement);
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
      connection->printError(future);
  }

  cass_future_free(future);
  cass_statement_free(statement);
140
141
}

142
143
/**
 * @details
144
145
 * This function updates the prepared statement for inserts
 * with the new TTL value.
146
 */
147
void SensorDataStoreImpl::setTTL(uint64_t ttl)
148
{
149
  prepareInsert(ttl);
150
151
}

Axel Auweter's avatar
Axel Auweter committed
152
153
154
155
/**
 * @details
 * This function issues a regular query to the data store
 * and creates a SensorDataStoreReading object for each
156
 * entry which is stored in the result list.
Axel Auweter's avatar
Axel Auweter committed
157
 */
158
void SensorDataStoreImpl::query(std::list<SensorDataStoreReading>& result, SensorId& sid, TimeStamp& start, TimeStamp& end)
Axel Auweter's avatar
Axel Auweter committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
{
  CassError rc = CASS_OK;
  CassStatement* statement = NULL;
  CassFuture *future = NULL;
  const CassPrepared* prepared = nullptr;
  const char* query = "SELECT * FROM " KEYSPACE_NAME "." CF_SENSORDATA " WHERE sid = ? AND ts >= ? AND ts <= ? ;";

  future = cass_session_prepare(session, query);
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
    connection->printError(future);
    cass_future_free(future);
    return;
  }

  prepared = cass_future_get_prepared(future);
  cass_future_free(future);

  std::string key = sid.serialize();

181
#if 0
182
  std::cout << "Query: " << query << std::endl << "sid: " << key << " ts1: " << start.getRaw() << " ts2: " << end.getRaw() << std::endl;
183
#endif
184

Axel Auweter's avatar
Axel Auweter committed
185
186
187
188
189
190
191
192
193
194
195
196
  statement = cass_prepared_bind(prepared);
  cass_statement_bind_bytes(statement, 0, (const cass_byte_t*)(key.c_str()), 16);
  cass_statement_bind_int64(statement, 1, start.getRaw());
  cass_statement_bind_int64(statement, 2, end.getRaw());

  future = cass_session_execute(session, statement);
  cass_future_wait(future);

  if (cass_future_error_code(future) == CASS_OK) {
      const CassResult* cresult = cass_future_get_result(future);
      CassIterator* rows = cass_iterator_from_result(cresult);

197
198
      SensorDataStoreReading entry;

Axel Auweter's avatar
Axel Auweter committed
199
200
201
202
203
204
205
206
      while (cass_iterator_next(rows)) {
          const CassRow* row = cass_iterator_get_row(rows);

          cass_int64_t ts, value;
          cass_value_get_int64(cass_row_get_column_by_name(row, "ts"), &ts);
          cass_value_get_int64(cass_row_get_column_by_name(row, "value"), &value);

          entry.sensorId = sid;
207
          entry.timeStamp = (uint64_t)ts;
208
          entry.value = (int64_t)value;
Axel Auweter's avatar
Axel Auweter committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

          result.push_back(entry);
#if 0
          if (localtime) {
              t.convertToLocal();
          }
          if (raw) {
              std::cout << sensorName << "," << std::dec << t.getRaw() << "," << std::dec << value << std::endl;
          }
          else {
              std::cout << sensorName << "," << t.getString() << "," << std::dec << value << std::endl;
          }
#endif
      }
      cass_iterator_free(rows);
      cass_result_free(cresult);
  }

  cass_statement_free(statement);
  cass_future_free(future);
  cass_prepared_free(prepared);
}

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/**
 * @details
 * This function issues a regular query to the data store
 * and calls cbFunc for every reading.
 */
void SensorDataStoreImpl::queryCB(SensorDataStore::QueryCbFunc cbFunc, void* userData, SensorId& sid, TimeStamp& start, TimeStamp& end)
{
  CassError rc = CASS_OK;
  CassStatement* statement = NULL;
  CassFuture *future = NULL;
  const CassPrepared* prepared = nullptr;
  const char* query = "SELECT * FROM " KEYSPACE_NAME "." CF_SENSORDATA " WHERE sid = ? AND ts >= ? AND ts <= ? ;";

  future = cass_session_prepare(session, query);
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
    connection->printError(future);
    cass_future_free(future);
    return;
  }

  prepared = cass_future_get_prepared(future);
  cass_future_free(future);

  std::string key = sid.serialize();

  statement = cass_prepared_bind(prepared);
  cass_statement_bind_bytes(statement, 0, (const cass_byte_t*)(key.c_str()), 16);
  cass_statement_bind_int64(statement, 1, start.getRaw());
  cass_statement_bind_int64(statement, 2, end.getRaw());

  future = cass_session_execute(session, statement);
  cass_future_wait(future);

  if (cass_future_error_code(future) == CASS_OK) {
      const CassResult* cresult = cass_future_get_result(future);
      CassIterator* rows = cass_iterator_from_result(cresult);

      SensorDataStoreReading entry;

      while (cass_iterator_next(rows)) {
          const CassRow* row = cass_iterator_get_row(rows);

          cass_int64_t ts, value;
          cass_value_get_int64(cass_row_get_column_by_name(row, "ts"), &ts);
          cass_value_get_int64(cass_row_get_column_by_name(row, "value"), &value);

          entry.sensorId = sid;
          entry.timeStamp = (uint64_t)ts;
          entry.value = (int64_t)value;

          cbFunc(entry, userData);
      }
      cass_iterator_free(rows);
      cass_result_free(cresult);
  }

  cass_statement_free(statement);
  cass_future_free(future);
  cass_prepared_free(prepared);
}

296
297
298
299
300
301
/**
 * @details
 * This function generates an integrated value of the time series
 * by first querying for the result set list using query() and then
 * summing up the result.
 */
302
SDSQueryResult SensorDataStoreImpl::querySum(int64_t& result, SensorId& sid, TimeStamp& start, TimeStamp& end)
303
304
305
306
307
308
{
  std::list<SensorDataStoreReading> queryResult;

  /* Issue a standard query */
  query(queryResult, sid, start, end);

Axel Auweter's avatar
Axel Auweter committed
309
310
311
312
  /* Check if at least 2 readings in result */
  if (queryResult.size() < 2)
    return SDS_EMPTYSET;

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
  /* Integrate the result */
  result = 0;

  SensorDataStoreReading prev;
  for (std::list<SensorDataStoreReading>::iterator it = queryResult.begin(); it != queryResult.end(); it++) {
      if (!(it == queryResult.begin())) {
          SensorDataStoreReading cur = *it;

          /* Calculate average between two readings */
          int64_t avg = (cur.value + prev.value) / 2;

          /* Calculate time difference */
          uint64_t dt = cur.timeStamp.getRaw() - prev.timeStamp.getRaw();

          /* Sum up (with lousy attempt to keep it numerically stable - should probably use double instead) */
          if (dt > 10000000000) {
              /* dt > 10s => convert dt to s first */
              dt /= 1000000000;
              result += avg * dt;
          }
          else {
              /* dt < 10s => multiply first */
              avg *= dt;
              result += avg / 1000000000;
          }
      }
      prev = *it;
  }
Axel Auweter's avatar
Axel Auweter committed
341
  return SDS_OK;
342
343
}

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
/**
 * @details
 * This function deletes all data from the sensordata store
 * that is older than weekStamp-1 weeks.
 */
void SensorDataStoreImpl::truncBeforeWeek(uint16_t weekStamp)
{
  /* List of rows that should be deleted */
  std::list<SensorId> deleteList;

  /* Query the database to collect all rows */
  CassError rc = CASS_OK;
  CassStatement* statement = nullptr;
  CassFuture* future = nullptr;
  const char* query = "SELECT DISTINCT sid FROM " KEYSPACE_NAME "." CF_SENSORDATA ";";

  statement = cass_statement_new(query, 0);
  future = cass_session_execute(session, statement);
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
      connection->printError(future);
      return;
  }

  const CassResult* result = cass_future_get_result(future);
  cass_future_free(future);

  CassIterator* iterator = cass_iterator_from_result(result);

  /* Iterate over all rows and filter out those, that are too old */
  while (cass_iterator_next(iterator)) {
      const CassRow* row = cass_iterator_get_row(iterator);
      const cass_byte_t* res;
      size_t       res_len;
      cass_value_get_bytes(cass_row_get_column_by_name(row, "sid"), &res, &res_len);

      uint64_t raw[2];
      raw[0] = Endian::BEToHost(((uint64_t*)res)[0]);
      raw[1] = Endian::BEToHost(((uint64_t*)res)[1]);

      SensorId sensor;
      sensor.setRaw(raw);

      /* Check if the sensorId's rsvd field is smaller than the weekStamp */
      if (sensor.getRsvd() < weekStamp) {
          deleteList.push_back(sensor);
      }
  }
  cass_result_free(result);
  cass_iterator_free(iterator);
  cass_statement_free(statement);

  /* Now iterate over all entries in the deleteList and delete them */
  for (std::list<SensorId>::iterator it = deleteList.begin(); it != deleteList.end(); it++) {
      deleteRow(*it);
  }
}

/**
 * @details
 * Deleting entire rows is rather efficient compared to deleting individual columns.
 */
void SensorDataStoreImpl::deleteRow(SensorId& sid)
{
  CassError rc = CASS_OK;
  CassStatement* statement = NULL;
  CassFuture *future = NULL;
  const CassPrepared* prepared = nullptr;
  const char* query = "DELETE FROM " KEYSPACE_NAME "." CF_SENSORDATA " WHERE sid = ?;";

  future = cass_session_prepare(session, query);
  cass_future_wait(future);

  rc = cass_future_error_code(future);
  if (rc != CASS_OK) {
    connection->printError(future);
    cass_future_free(future);
    return;
  }

  prepared = cass_future_get_prepared(future);
  cass_future_free(future);

  std::string key = sid.serialize();

  statement = cass_prepared_bind(prepared);
  cass_statement_bind_bytes(statement, 0, (const cass_byte_t*)(key.c_str()), 16);

  future = cass_session_execute(session, statement);
  cass_future_wait(future);

  cass_statement_free(statement);
  cass_future_free(future);
  cass_prepared_free(prepared);
}

442
443
/**
 * @details
444
 * This constructor sets the internal connection variable to
445
 * the externally provided Connection object and also
446
 * retrieves the CassSession pointer of the connection.
447
 */
448
SensorDataStoreImpl::SensorDataStoreImpl(Connection* conn)
449
{
450
451
  connection = conn;
  session = connection->getSessionHandle();
Axel Auweter's avatar
Axel Auweter committed
452
453
454

  preparedInsert = nullptr;
  prepareInsert(0);
455
456
}

457
458
/**
 * @details
459
 * Due to the simplicity of the class, the destructor is left empty.
460
 */
461
SensorDataStoreImpl::~SensorDataStoreImpl()
462
{
463
  connection = nullptr;
Axel Auweter's avatar
Axel Auweter committed
464
465
466
467
  session = nullptr;
  if (preparedInsert) {
      cass_prepared_free(preparedInsert);
  }
468
469
}

470
471
472
473
474
475
/**
 * @details
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
 */
476
void SensorDataStore::insert(SensorId* sid, uint64_t ts, int64_t value)
477
478
479
480
{
    impl->insert(sid, ts, value);
}

481
482
/**
 * @details
483
484
485
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
486
 */
487
void SensorDataStore::setTTL(uint64_t ttl)
488
{
489
    impl->setTTL(ttl);
490
491
}

Axel Auweter's avatar
Axel Auweter committed
492
493
494
495
496
497
/**
 * @details
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
 */
498
void SensorDataStore::query(std::list<SensorDataStoreReading>& result, SensorId& sid, TimeStamp& start, TimeStamp& end)
Axel Auweter's avatar
Axel Auweter committed
499
500
501
502
{
    impl->query(result, sid, start, end);
}

503
504
505
506
507
508
509
510
511
512
513
/**
 * @details
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
 */
void SensorDataStore::queryCB(SensorDataStore::QueryCbFunc cbFunc, void* userData, SensorId& sid, TimeStamp& start, TimeStamp& end)
{
    return impl->queryCB(cbFunc, userData, sid, start, end);
}

514
515
516
517
518
519
/**
 * @details
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
 */
520
SDSQueryResult SensorDataStore::querySum(int64_t& result, SensorId& sid, TimeStamp& start, TimeStamp& end)
521
{
Axel Auweter's avatar
Axel Auweter committed
522
    return impl->querySum(result, sid, start, end);
523
524
}

525
526
527
528
529
530
531
532
533
534
535
/**
 * @details
 * Instead of doing the actual work, this function simply
 * forwards to the insert function of the SensorDataStoreImpl
 * class.
 */
void SensorDataStore::truncBeforeWeek(uint16_t weekStamp)
{
    return impl->truncBeforeWeek(weekStamp);
}

536
537
/**
 * @details
538
539
 * This constructor allocates the implementation class which
 * holds the actual implementation of the class functionality.
540
 */
541
SensorDataStore::SensorDataStore(Connection* conn)
542
{
543
    impl = new SensorDataStoreImpl(conn);
544
545
}

546
547
548
549
550
/**
 * @details
 * The SensorDataStore desctructor deallocates the
 * SensorDataStoreImpl and CassandraBackend objects.
 */
551
552
SensorDataStore::~SensorDataStore()
{
553
554
555
  /* Clean up... */
  if (impl)
    delete impl;
556
}