PerSystSqlOperator.cpp 9.16 KB
Newer Older
1
//================================================================================
2
// Name        : PerSystSqlOperator.cpp
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// Author      : Carla Guillen
// Contact     : info@dcdb.it
// Copyright   : Leibniz Supercomputing Centre
// Description : Template implementing features to use Units in Operators.
//================================================================================

//================================================================================
// This file is part of DCDB (DataCenter DataBase)
// Copyright (C) 2018-2019 Leibniz Supercomputing Centre
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
//================================================================================

28
29
#include "PerSystSqlOperator.h"

30
31
32
33
34
#include <boost/log/sources/record_ostream.hpp>
#include <boost/log/trivial.hpp>
#include <boost/log/utility/formatting_ostream.hpp>
#include <boost/parameter/keyword.hpp>
#include <stddef.h>
35
#include <cmath>
36
#include <cstdint>
37
#include <memory>
38
#include <string>
39
#include <numeric>
40
41

#include "../../../common/include/logging.h"
42
#include "../../../common/include/sensorbase.h"
43
44
45
#include "../../../common/include/timestamp.h"
#include "../../includes/CommonStatistics.h"
#include "../../includes/QueryEngine.h"
46
#include "../../includes/UnitTemplate.h"
47

48
PerSystSqlOperator::PerSystSqlOperator(const std::string& name) :
49
50
		OperatorTemplate(name), JobOperatorTemplate(name), _number_of_even_quantiles(0),
		_severity_formula(NOFORMULA), _severity_threshold(0), _severity_exponent(0),
Carla Guillen's avatar
Carla Guillen committed
51
		_severity_max_memory(0), _go_back_ns(0) {
52
53
}

54
PerSystSqlOperator::~PerSystSqlOperator() {
55
56
}

57
void PerSystSqlOperator::compute(U_Ptr unit, qeJobData& jobData) {
58
59
60
    // Clearing the buffer, if already allocated
	_buffer.clear();
    size_t elCtr=0;
Carla Guillen's avatar
Carla Guillen committed
61
    uint64_t my_timestamp = getTimestamp() - _go_back_ns;
62
63
64
65
66
67
68
69
    // Making sure that the aggregation boundaries do not go past the job start/end time
    uint64_t jobEnd   = jobData.endTime!=0 && my_timestamp > jobData.endTime ? jobData.endTime : my_timestamp;
    uint64_t jobStart = jobEnd-my_timestamp < jobData.startTime ? jobData.startTime : jobEnd-my_timestamp;
    // Job units are hierarchical, and thus we iterate over all sub-units associated to each single node
    for(const auto& subUnit : unit->getSubUnits()) {
        // Getting the most recent values as specified in _window
        // Since we do not clear the internal buffer, all sensor readings will be accumulated in the same vector
        for(const auto& in : subUnit->getInputs()) {
Carla Guillen's avatar
Bug fix    
Carla Guillen committed
70
            if(!_queryEngine.querySensor(in->getName(), my_timestamp, my_timestamp, _buffer, false)){
71
72
73
74
75
76
77
78
                LOG(debug) << "Job Operator " << _name << " cannot read from sensor " << in->getName() << "!";
                return;
            }
        }
    }
    compute_internal(unit, _buffer);
}

Carla Guillen's avatar
Carla Guillen committed
79
void PerSystSqlOperator::compute_internal(U_Ptr& unit, vector<reading_t>& buffer) {
Carla Guillen Carias's avatar
Carla Guillen Carias committed
80
	_quantileSensors.clear();
81
82
    reading_t reading;
    AggregatorSensorBase::aggregationOps_t op;
Carla Guillen's avatar
Carla Guillen committed
83
    reading.timestamp = getTimestamp() - _go_back_ns;
84
85
86

    std::vector<double> douBuffer;
    punToDoubles(buffer, douBuffer);
87
88
89
90
91
92
    // Performing the actual aggregation operation
    for(const auto& out : unit->getOutputs()) {
        op = out->getOperation();
        if(op!=AggregatorSensorBase::QTL) {
            switch (op) {
                case AggregatorSensorBase::SUM:
93
                    reading.value = punDoubleToLL(std::accumulate(douBuffer.begin(), douBuffer.end(), 0.0));
94
95
                    break;
                case AggregatorSensorBase::AVG:
96
                    reading.value = punDoubleToLL(std::accumulate(douBuffer.begin(), douBuffer.end(), 0.0)/douBuffer.size());
97
98
99
100
                    break;
                case AggregatorSensorBase::OBS:
                    reading.value = computeObs(buffer);
                    break;
101
                case AggregatorSensorBase::AVG_SEV:
102
103
                    reading.value = punDoubleToLL(computeSeverityAverage(douBuffer));
                    break;
104
                default:
105
                    LOG(warning) << _name << ": Operation " << op << " not supported!";
106
107
108
109
                    reading.value = 0;
                    break;
            }
            out->storeReading(reading);
Carla Guillen Carias's avatar
Carla Guillen Carias committed
110
        } else {
Carla Guillen's avatar
Carla Guillen committed
111
            _quantileSensors.push_back(out);
112
113
114
115
        }
    }

    if(!_quantileSensors.empty()) {
116
117
    	vector<double> quantiles;
      	computeEvenQuantiles(douBuffer, _number_of_even_quantiles, quantiles);
118
        for(unsigned idx=0; idx<quantiles.size(); idx++) {
119
            reading.value = punDoubleToLL(quantiles[idx]);
120
121
122
123
124
            _quantileSensors[idx]->storeReading(reading);
        }
    }
}

125
void PerSystSqlOperator::compute(U_Ptr unit){
126
127
//nothing here!
}
Carla Guillen Carias's avatar
Carla Guillen Carias committed
128

129
130
double severity_formula1(double metric, double threshold, double exponent){
	double val = metric - threshold;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
131
	if (val > 0) {
132
		double ret = (pow(val, exponent));
Carla Guillen Carias's avatar
Carla Guillen Carias committed
133
134
135
136
137
138
139
140
		if(ret > 1){
			return 1;
		}
		return ret;
	}
	return 0;
}

141
double severity_formula2(double metric, double threshold, double exponent){
Carla Guillen Carias's avatar
Carla Guillen Carias committed
142
143
144
	if(!threshold){
		return -1;
	}
145
	double val = metric / threshold - 1;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
146
	if (val > 0) {
147
		double ret= (pow(val, exponent));
Carla Guillen Carias's avatar
Carla Guillen Carias committed
148
149
150
151
152
153
154
155
		if(ret > 1){
			return 1;
		}
		return ret;
	}
	return 0;
}

156
double severity_formula3(double metric, double threshold, double exponent){
Carla Guillen Carias's avatar
Carla Guillen Carias committed
157
158
159
	if (!threshold) {
		return -1;
	}
160
	double val = metric / threshold;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
161
	if (val > 0) {
162
		double ret= (1 - pow(val, exponent));
Carla Guillen Carias's avatar
Carla Guillen Carias committed
163
164
165
166
167
168
169
170
171
172
173
		if(ret > 1 ){
			return 1;
		}
		if( ret < 0 ){
			return 0;
		}
		return ret;
	}
	return 0;
}

174
175
176
double severity_memory(double metric, double threshold, double max_memory){
	double denominator = max_memory - threshold;
	double severity = -1;
Carla Guillen Carias's avatar
Carla Guillen Carias committed
177
178
179
180
181
182
183
184
185
186
	if(denominator){
		severity = metric - threshold/(max_memory - threshold);
		if(severity > 1) {
			severity = 1;
		} else if(severity < 0){
			severity = 0;
		}
	}
	return severity;
}
187

188
189
double PerSystSqlOperator::computeSeverityAverage(std::vector<double> & buffer){
	std::vector<double> severities;
190
191
	switch( _severity_formula ) {
		case (FORMULA1):
192
193
			for(auto val : buffer){
				auto severity = severity_formula1(val, _severity_threshold, _severity_exponent);
194
195
196
197
				severities.push_back(severity);
			}
		break;
		case (FORMULA2):
198
199
			for(auto val: buffer){
				auto severity = severity_formula2(val, _severity_threshold, _severity_exponent);
200
201
202
203
				severities.push_back(severity);
			}
		break;
		case (FORMULA3):
204
205
			for(auto val: buffer){
				auto severity = severity_formula3(val, _severity_threshold, _severity_exponent);
206
207
208
209
				severities.push_back(severity);
			}
		break;
		case (MEMORY_FORMULA):
210
211
			for(auto val: buffer){
				auto severity = severity_memory(val, _severity_threshold, _severity_max_memory);
212
213
214
215
				severities.push_back(severity);
			}
		break;
		case (NOFORMULA):
216
217
218
			for(auto val: buffer){
				severities.push_back(severity_noformula());
			}
Carla Guillen Carias's avatar
Carla Guillen Carias committed
219
		break;
220
221
222
223
224
		default:
			return 0.0;
			break;
	}
	if (severities.size()){
225
		return (std::accumulate(severities.begin(),severities.end(), 0.0) / severities.size());
226
227
	}
	return 0.0;
228
}
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275


void punToDoubles(std::vector<reading_t> & buffer, std::vector<double> & outDoubleVec){
	for(auto & reading: buffer){
		outDoubleVec.push_back(punLLToDouble(reading.value));
	}
}

double punLLToDouble(long long value){
        double * returnval;
        returnval = (double *)(&value);
        return *returnval;
}

long long punDoubleToLL(double value){
        long long * returnval;
        returnval = (long long *)(&value);

        return *returnval;
}


void computeEvenQuantiles(std::vector<double> &data, const unsigned int NUMBER_QUANTILES, std::vector<double> &quantiles) {
        if (data.empty() || NUMBER_QUANTILES == 0) {
                return;
        }
        std::sort(data.begin(), data.end());
        int elementNumber = data.size();
        quantiles.resize(NUMBER_QUANTILES + 1); //+min
        double factor = elementNumber/static_cast<double>(NUMBER_QUANTILES);
        quantiles[0] = data[0]; //minimum
        quantiles[NUMBER_QUANTILES] = data[data.size() - 1]; //maximum
        for (unsigned int i = 1; i < NUMBER_QUANTILES; i++) {
                if (elementNumber > 1) {
                        int idx = static_cast<int>(std::floor(i * factor));
                        if(idx == 0){
                                quantiles[i] = data[0];
                        } else {
                                double rest = (i * factor) - idx;
                                quantiles[i] = data[idx - 1] + rest * (data[idx] - data[idx - 1]); //ToDo scaling factor??
                        }
                } else { //optimization, we don't need to calculate all the quantiles
                        quantiles[i] = data[0];
                }
        }
}