<divclass="CFunction"><divclass=CTopic><h3class=CTitle><aname="SymbolicSet.remPolytope"></a>remPolytope</h3><divclass=CBody><blockquote><tableborder=0cellspacing=0cellpadding=0class="Prototype prettyprint"><tr><td><tableborder=0cellspacing=0cellpadding=0><tr><tdclass=PBeforeParametersnowrap>void remPolytope(</td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>size_t </td><tdclass=PParameterPrefixnowrap></td><tdclass=PParameternowrap>p,</td></tr><tr><td></td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>double </td><tdclass=PParameterPrefixnowrap>*</td><tdclass=PParameternowrap>H,</td></tr><tr><td></td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>double </td><tdclass=PParameterPrefixnowrap>*</td><tdclass=PParameternowrap>h,</td></tr><tr><td></td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>ApproximationType </td><tdclass=PParameterPrefixnowrap></td><tdclass=PParameternowrap>type</td><tdclass=PAfterParametersnowrap>)</td></tr></table></td></tr></table></blockquote><p>remove grid points that are in polytope P = { x | H x <= h }</p><h4class=CHeading>Input</h4><tableborder=0cellspacing=0cellpadding=0class=CDescriptionList><tr><tdclass=CDLEntry>p</td><tdclass=CDLDescription>number of halfspaces</td></tr><tr><tdclass=CDLEntry>H</td><tdclass=CDLDescription>is a double vector of size dim*p which contains the normal vectors n1...np of the half spaces. H = { n1, n2, n3 ... np }</td></tr><tr><tdclass=CDLEntry>h</td><tdclass=CDLDescription>double vector of size p</td></tr><tr><tdclass=CDLEntry>type</td><tdclass=CDLDescription>approximation type is either INNER or OUTER:</td></tr></table><ul><li>INNER -> grid points whose cells are completely contained in P are <b>removed</b> from the symolic set</li><li>OUTER -> grid points whose cells overlap with P are <b>removed</b> from the symolic set</li></ul></div></div></div>
<divclass="CFunction"><divclass=CTopic><h3class=CTitle><aname="SymbolicSet.addEllipsoid"></a>addEllipsoid</h3><divclass=CBody><blockquote><tableborder=0cellspacing=0cellpadding=0class="Prototype prettyprint"><tr><td><tableborder=0cellspacing=0cellpadding=0><tr><tdclass=PBeforeParametersnowrap>void addEllipsoid(</td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>double </td><tdclass=PParameterPrefixnowrap>*</td><tdclass=PParameternowrap>L,</td></tr><tr><td></td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>double </td><tdclass=PParameterPrefixnowrap>*</td><tdclass=PParameternowrap>c,</td></tr><tr><td></td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>ApproximationType </td><tdclass=PParameterPrefixnowrap></td><tdclass=PParameternowrap>type</td><tdclass=PAfterParametersnowrap>)</td></tr></table></td></tr></table></blockquote><p>add grid points that are in ellipsoid E = { x | (x-c)’ L’ L (x-c) <= 1 }</p><h4class=CHeading>Input</h4><tableborder=0cellspacing=0cellpadding=0class=CDescriptionList><tr><tdclass=CDLEntry>L</td><tdclass=CDLDescription>is a double vector of size dim*dim so that L’*L is positive definit</td></tr><tr><tdclass=CDLEntry>c</td><tdclass=CDLDescription>double vector of size dim containing the center of the ellispoid</td></tr><tr><tdclass=CDLEntry>type</td><tdclass=CDLDescription>approximation type is either INNER or OUTER:</td></tr></table><ul><li>INNER -> grid points whose cells are completely contained in E are <b>added</b> to the symolic set</li><li>OUTER -> grid points whose cells overlap with E are <b>added</b> to the symolic set</li></ul></div></div></div>
<divclass="CFunction"><divclass=CTopic><h3class=CTitle><aname="SymbolicSet.addEllipsoid"></a>addEllipsoid</h3><divclass=CBody><blockquote><tableborder=0cellspacing=0cellpadding=0class="Prototype prettyprint"><tr><td><tableborder=0cellspacing=0cellpadding=0><tr><tdclass=PBeforeParametersnowrap>void addEllipsoid(</td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>double </td><tdclass=PParameterPrefixnowrap>*</td><tdclass=PParameternowrap>L,</td></tr><tr><td></td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>double </td><tdclass=PParameterPrefixnowrap>*</td><tdclass=PParameternowrap>c,</td></tr><tr><td></td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>ApproximationType </td><tdclass=PParameterPrefixnowrap></td><tdclass=PParameternowrap>type</td><tdclass=PAfterParametersnowrap>)</td></tr></table></td></tr></table></blockquote><p>add grid points that are in ellipsoid E = { x | (x-c)’ L’ L (x-c) <= 1 }</p><h4class=CHeading>Input</h4><tableborder=0cellspacing=0cellpadding=0class=CDescriptionList><tr><tdclass=CDLEntry>L</td><tdclass=CDLDescription>is a double vector of size dim*dim so that L’*L is positive definite</td></tr><tr><tdclass=CDLEntry>c</td><tdclass=CDLDescription>double vector of size dim containing the center of the ellispoid</td></tr><tr><tdclass=CDLEntry>type</td><tdclass=CDLDescription>approximation type is either INNER or OUTER:</td></tr></table><ul><li>INNER -> grid points whose cells are completely contained in E are <b>added</b> to the symolic set</li><li>OUTER -> grid points whose cells overlap with E are <b>added</b> to the symolic set</li></ul></div></div></div>
<divclass="CFunction"><divclass=CTopic><h3class=CTitle><aname="SymbolicSet.remEllipsoid"></a>remEllipsoid</h3><divclass=CBody><blockquote><tableborder=0cellspacing=0cellpadding=0class="Prototype prettyprint"><tr><td><tableborder=0cellspacing=0cellpadding=0><tr><tdclass=PBeforeParametersnowrap>void remEllipsoid(</td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>double </td><tdclass=PParameterPrefixnowrap>*</td><tdclass=PParameternowrap>L,</td></tr><tr><td></td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>double </td><tdclass=PParameterPrefixnowrap>*</td><tdclass=PParameternowrap>c,</td></tr><tr><td></td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>ApproximationType </td><tdclass=PParameterPrefixnowrap></td><tdclass=PParameternowrap>type</td><tdclass=PAfterParametersnowrap>)</td></tr></table></td></tr></table></blockquote><p>remove grid points that are in ellipsoid E = { x | (x-c)’ L’ L (x-c) <= 1 }</p><h4class=CHeading>Input</h4><tableborder=0cellspacing=0cellpadding=0class=CDescriptionList><tr><tdclass=CDLEntry>L</td><tdclass=CDLDescription>is a double vector of size dim*dim so that L’*L is positive definit</td></tr><tr><tdclass=CDLEntry>c</td><tdclass=CDLDescription>double vector of size dim containing the center of the ellispoid</td></tr><tr><tdclass=CDLEntry>type</td><tdclass=CDLDescription>approximation type is either INNER or OUTER:</td></tr></table><ul><li>INNER -> grid points whose cells are completely contained in E are <b>removed</b> from the symolic set</li><li>OUTER -> grid points whose cells overlap with E are <b>removed</b> from the symolic set</li></ul></div></div></div>
<divclass="CFunction"><divclass=CTopic><h3class=CTitle><aname="SymbolicSet.remEllipsoid"></a>remEllipsoid</h3><divclass=CBody><blockquote><tableborder=0cellspacing=0cellpadding=0class="Prototype prettyprint"><tr><td><tableborder=0cellspacing=0cellpadding=0><tr><tdclass=PBeforeParametersnowrap>void remEllipsoid(</td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>double </td><tdclass=PParameterPrefixnowrap>*</td><tdclass=PParameternowrap>L,</td></tr><tr><td></td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>double </td><tdclass=PParameterPrefixnowrap>*</td><tdclass=PParameternowrap>c,</td></tr><tr><td></td><tdclass=PTypePrefixnowrap>const </td><tdclass=PTypenowrap>ApproximationType </td><tdclass=PParameterPrefixnowrap></td><tdclass=PParameternowrap>type</td><tdclass=PAfterParametersnowrap>)</td></tr></table></td></tr></table></blockquote><p>remove grid points that are in ellipsoid E = { x | (x-c)’ L’ L (x-c) <= 1 }</p><h4class=CHeading>Input</h4><tableborder=0cellspacing=0cellpadding=0class=CDescriptionList><tr><tdclass=CDLEntry>L</td><tdclass=CDLDescription>is a double vector of size dim*dim so that L’*L is positive definite</td></tr><tr><tdclass=CDLEntry>c</td><tdclass=CDLDescription>double vector of size dim containing the center of the ellispoid</td></tr><tr><tdclass=CDLEntry>type</td><tdclass=CDLDescription>approximation type is either INNER or OUTER:</td></tr></table><ul><li>INNER -> grid points whose cells are completely contained in E are <b>removed</b> from the symolic set</li><li>OUTER -> grid points whose cells overlap with E are <b>removed</b> from the symolic set</li></ul></div></div></div>
<divclass="CFunction"><divclass=CTopic><h3class=CTitle><aname="SymbolicSet.printInfo"></a>printInfo</h3><divclass=CBody><blockquote><tableborder=0cellspacing=0cellpadding=0class="Prototype prettyprint"><tr><td><tableborder=0cellspacing=0cellpadding=0><tr><tdclass=PBeforeParametersnowrap>void printInfo(</td><tdclass=PTypenowrap>int </td><tdclass=PParameternowrap>verbosity</td><tdclass=PDefaultValuePrefix> = </td><tdclass=PAfterParametersnowrap>) const</td></tr></table></td></tr></table></blockquote><p>print some numbers related to the symbolic set</p></div></div></div>