Commit 23382b20 authored by hm-striegle's avatar hm-striegle

Update of Example 1

parent 6ff1d16d
......@@ -30,9 +30,9 @@ E_Tx = sig_1550(esig = esig)
# Define your parameters here
T_0 = 25.0e-12
z = 100.0e3
D = 17.0
beta_2, beta_3 = DS2beta(17.0, 0, gp.lambda0)
z = SSMF.l
D = SSMF.D
beta_2, beta_3 = DS2beta(D, 0, gp.lambda0)
# Create a single pulse with gaussian shape (not power!)
......@@ -45,7 +45,7 @@ E = SSMF(E = E, D = D, l = z)
# Plot Input and Output signal
plt.figure(1)
plt.plot(gp.timeax*1.0e12, np.abs(E_Tx[0]['E'][0]), 'r', label='$E(0, t)$')
plt.plot(gp.timeax*1.0e12, np.abs(E[0]['E'][0]), 'g', label='$E(z=100$km$, t)$')
plt.plot(gp.timeax*1.0e12, np.abs(E[0]['E'][0]), 'g', label='$E(z='+ str(SSMF.l/1e3)+' $km$, t)$')
# Get FWHM of the input signal E_Tx
......@@ -64,6 +64,7 @@ plt.annotate(s='', xy=(r1,np.max(np.abs(E[0]['E'][0]))/2), xytext=(r2,np.max(np.
plt.text(r1+(r2-r1)/2.0, 0.01 + np.max(np.abs(E[0]['E'][0]))/2, '$T_{FWHM,1}$ = ' + str(np.round(r2-r1,2)) + ' ps', fontsize=12, horizontalalignment='center')
T_FWHM_1 = (r2-r1) * 1e-12
plt.ylabel('$|E|$ a.u.'); plt.xlabel('Time $t$ [ps]'); legend = plt.legend(loc='upper right')
plt.show()
L_D = (T_0_plot)**2 / np.abs(beta_2)
# Print the results
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment