StateEquation.hs 2.21 KB
Newer Older
1
module Solver.StateEquation
Philipp Meyer's avatar
Philipp Meyer committed
2
    (checkStateEquationSat)
3
4
5
where

import Data.SBV
6
import Control.Monad
7
8
9
10
11
12

import PetriNet
import Property
import Solver
import Solver.Formula

13
14
15
16
17
18
19
20
21
placeConstraints :: PetriNet -> VarMap Place -> VarMap Transition -> IntConstraint
placeConstraints net m x =
            liftM bAnd $ mapM checkPlaceEquation $ places net
        where checkPlaceEquation p = do
                mp <- val m p
                incoming <- mapM addTransition $ lpre net p
                outgoing <- mapM addTransition $ lpost net p
                let pinit = literal $ initial net p
                return $ pinit + sum incoming - sum outgoing .== mp
22
              addTransition (t,w) = liftM (literal w *) (val x t)
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

nonNegativityConstraints :: PetriNet -> VarMap Place -> VarMap Transition ->
        IntConstraint
nonNegativityConstraints net m x = do
            mnn <- mapM (checkVal m) (places net)
            xnn <- mapM (checkVal x) (transitions net)
            return $ bAnd mnn &&& bAnd xnn
        where checkVal mapping n = do
                mn <- val mapping n
                return $ mn .>= 0

checkTraps :: [Trap] -> VarMap Place -> IntConstraint
checkTraps traps m = do
            tc <- mapM checkTrapDelta traps
            return $ bAnd tc
        where checkTrapDelta trap = do
                mts <- mapM (val m) trap
                return $ sum mts .>= 1

checkStateEquation :: PetriNet -> Formula Place ->
        VarMap Place -> VarMap Transition -> [Trap] ->
        IntConstraint
checkStateEquation net f m x traps = do
        c1 <- placeConstraints net m x
        c2 <- nonNegativityConstraints net m x
        c3 <- checkTraps traps m
        c4 <- evaluateFormula f m
        return $ c1 &&& c2 &&& c3 &&& c4

checkStateEquationSat :: PetriNet -> Formula Place -> [Trap] ->
Philipp Meyer's avatar
Philipp Meyer committed
53
        ConstraintProblem Integer Marking
54
checkStateEquationSat net f traps =
55
56
        let m = makeVarMap $ places net
            x = makeVarMap $ transitions net
Philipp Meyer's avatar
Philipp Meyer committed
57
58
        in  ("state equation", "marking",
             getNames m ++ getNames x,
59
             checkStateEquation net f m x traps,
Philipp Meyer's avatar
Philipp Meyer committed
60
             markingFromAssignment m)
61

Philipp Meyer's avatar
Philipp Meyer committed
62
63
markingFromAssignment :: VarMap Place -> IntResult Marking
markingFromAssignment m =
64
        liftM makeVector $ valMap m
65