Simplifier.hs 4.65 KB
 Philipp Meyer committed Feb 03, 2015 1 ``````module Solver.Simplifier ( `````` Philipp Meyer committed Feb 05, 2015 2 3 4 `````` checkSubsumptionSat ,SimpleCut ,generateCuts `````` Philipp Meyer committed Feb 03, 2015 5 6 7 8 9 ``````) where import Data.SBV import qualified Data.Map as M import qualified Data.Set as S `````` Philipp Meyer committed Feb 05, 2015 10 ``````import Control.Monad `````` Philipp Meyer committed Feb 03, 2015 11 12 `````` import Util `````` Philipp Meyer committed Feb 05, 2015 13 ``````import Options `````` Philipp Meyer committed Feb 03, 2015 14 ``````import Solver `````` Philipp Meyer committed Feb 05, 2015 15 ``````import Property `````` Philipp Meyer committed Feb 03, 2015 16 17 ``````import PetriNet `````` Philipp Meyer committed Feb 05, 2015 18 19 ``````type SimpleCut = (S.Set Transition, [S.Set Transition]) `````` Philipp Meyer committed Feb 03, 2015 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ``````checkTransPositive :: SBMap Transition -> S.Set Transition -> SBool checkTransPositive m ts = bOr \$ map (val m) \$ S.elems ts checkTransNegative :: SBMap Transition -> S.Set Transition -> SBool checkTransNegative m ts = bAnd \$ map (bnot . val m) \$ S.elems ts checkCutPositive :: SBMap Transition -> SimpleCut -> SBool checkCutPositive m (c0, cs) = checkTransNegative m c0 &&& bAnd (map (checkTransPositive m) cs) checkCutNegative :: SBMap Transition -> SimpleCut -> SBool checkCutNegative m (c0, cs) = checkTransPositive m c0 ||| bOr (map (checkTransNegative m) cs) checkCuts :: SimpleCut -> [SimpleCut] -> SBMap Transition -> SBool checkCuts c0 cs m = checkCutPositive m c0 &&& bAnd (map (checkCutNegative m) cs) getSubsumption :: BMap Transition -> [Transition] getSubsumption m = M.keys (M.filter id m) `````` Philipp Meyer committed Feb 05, 2015 40 41 42 ``````checkSubsumptionSat :: SimpleCut -> [SimpleCut] -> ConstraintProblem Bool [Transition] checkSubsumptionSat c0 cs = let m = makeVarMap \$ S.elems \$ S.unions \$ map cutTransitions (c0:cs) `````` Philipp Meyer committed Feb 03, 2015 43 44 45 46 `````` in ("constraint subsumption", "subsumption", getNames m, \fm -> checkCuts c0 cs (fmap fm m), \fm -> getSubsumption (fmap fm m)) `````` Philipp Meyer committed Feb 05, 2015 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 `````` cutTransitions :: SimpleCut -> S.Set Transition cutTransitions (c0, cs) = S.unions (c0:cs) generateCuts :: Formula Transition -> [Cut] -> OptIO [SimpleCut] generateCuts f cuts = foldM combine [formulaToCut f] (map cutToSimpleDNFCuts cuts) where combine cs1 cs2 = do simp <- opt optSimpFormula let cs = [ (c1c0 `S.union` c2c0, c1cs ++ c2cs) | (c1c0, c1cs) <- cs1, (c2c0, c2cs) <- cs2 ] let cs' = if simp > 0 then simplifyCuts cs else cs let cs'' = if simp > 1 then simplifyBySubsumption cs' else return cs' cs'' simplifyCuts :: [SimpleCut] -> [SimpleCut] simplifyCuts = removeWith isMoreGeneralCut . concatMap simplifyCut simplifyCut :: SimpleCut -> [SimpleCut] simplifyCut (c0, cs) = let remove b a = a `S.difference` b cs' = removeWith S.isSubsetOf \$ map (remove c0) cs in if any S.null cs' then [] else [(c0, cs')] simplifyBySubsumption :: [SimpleCut] -> OptIO [SimpleCut] simplifyBySubsumption = simplifyBySubsumption' [] simplifyBySubsumption' :: [SimpleCut] -> [SimpleCut] -> OptIO [SimpleCut] simplifyBySubsumption' acc [] = return \$ reverse acc simplifyBySubsumption' acc (c0:cs) = do r <- checkSat \$ checkSubsumptionSat c0 (acc ++ cs) let acc' = case r of Nothing -> acc Just _ -> c0:acc simplifyBySubsumption' acc' cs removeWith :: (a -> a -> Bool) -> [a] -> [a] removeWith f = removeCuts' [] where removeCuts' acc [] = reverse acc removeCuts' acc (x:xs) = removeCuts' (x : cutFilter x acc) (cutFilter x xs) cutFilter cut = filter (not . f cut) isMoreGeneralCut :: SimpleCut -> SimpleCut -> Bool isMoreGeneralCut (c1c0, c1cs) (c2c0, c2cs) = c1c0 `S.isSubsetOf` c2c0 && all (\c1 -> any (`S.isSubsetOf` c1) c2cs) c1cs cutToSimpleDNFCuts :: Cut -> [SimpleCut] cutToSimpleDNFCuts (ts, u) = (S.empty, [S.fromList u]) : map (\(_, t) -> (S.fromList t, [])) ts formulaToCut :: Formula Transition -> SimpleCut formulaToCut = transformF where transformF FTrue = (S.empty, []) transformF (p :&: q) = let (p0, ps) = transformF p (q0, qs) = transformF q in (p0 `S.union` q0, ps ++ qs) transformF (LinearInequation ts Gt (Const 0)) = (S.empty, [transformTerm ts]) transformF (LinearInequation ts Ge (Const 1)) = (S.empty, [transformTerm ts]) transformF (LinearInequation ts Eq (Const 0)) = (transformTerm ts, []) transformF (LinearInequation ts Le (Const 0)) = (transformTerm ts, []) transformF (LinearInequation ts Lt (Const 1)) = (transformTerm ts, []) transformF f = error \$ "formula not supported for invariant: " ++ show f transformTerm (t :+: u) = transformTerm t `S.union` transformTerm u transformTerm (Var x) = S.singleton x transformTerm t = error \$ "term not supported for invariant: " ++ show t ``````