glgaussianfilter.cpp 9.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
// ================================================================================================
// 
// This file is part of the CAMPVis Software Framework.
// 
// If not explicitly stated otherwise: Copyright (C) 2012-2013, all rights reserved,
//      Christian Schulte zu Berge <christian.szb@in.tum.de>
//      Chair for Computer Aided Medical Procedures
//      Technische Universität München
//      Boltzmannstr. 3, 85748 Garching b. München, Germany
// 
// For a full list of authors and contributors, please refer to the file "AUTHORS.txt".
// 
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file 
// except in compliance with the License. You may obtain a copy of the License at
// 
// http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software distributed under the 
// License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, 
// either express or implied. See the License for the specific language governing permissions 
// and limitations under the License.
// 
// ================================================================================================

#include "glgaussianfilter.h"

#include "tgt/buffer.h"
#include "tgt/logmanager.h"
#include "tgt/shadermanager.h"
#include "tgt/textureunit.h"
#include "tgt/texture.h"

#include "core/datastructures/imagedata.h"
#include "core/datastructures/imagerepresentationgl.h"
#include "core/datastructures/renderdata.h"

#include "core/tools/quadrenderer.h"
#include "core/tools/stringutils.h"

namespace campvis {

    const std::string GlGaussianFilter::loggerCat_ = "CAMPVis.modules.classification.GlGaussianFilter";

    #define MAX_SIGMA 20.f
    #define MAX_HALF_KERNEL_SIZE static_cast<int>(MAX_SIGMA * 2.5f) + 2

    GlGaussianFilter::GlGaussianFilter(IVec2Property* viewportSizeProp)
        : VisualizationProcessor(viewportSizeProp)
        , p_inputImage("InputImage", "Input Image", "", DataNameProperty::READ)
        , p_outputImage("OutputImage", "Output Image", "GlGaussianFilter.out", DataNameProperty::WRITE)
        , p_sigma("Sigma", "Sigma (relates to kernel size)", 2.5f, 1.f, MAX_SIGMA, .1f, 1)
52
53
        , _shader2D(0)
        , _shader3D(0)
54
55
56
        , _kernelBuffer(0)
        , _kernelBufferTexture(0)
    {
57
58
59
        addProperty(p_inputImage);
        addProperty(p_outputImage);
        addProperty(p_sigma);
60
61
62
63
64
65
66
67
68
    }

    GlGaussianFilter::~GlGaussianFilter() {

    }

    void GlGaussianFilter::init() {
        VisualizationProcessor::init();

69
70
71
72
73
74
75
        _shader2D = ShdrMgr.load("core/glsl/passthrough.vert", "modules/preprocessing/glsl/glgaussianfilter.frag", "#define GAUSSIAN_2D\n");
        _shader2D->setAttributeLocation(0, "in_Position");
        _shader2D->setAttributeLocation(1, "in_TexCoord");

        _shader3D = ShdrMgr.load("core/glsl/passthrough.vert", "modules/preprocessing/glsl/glgaussianfilter.frag", "#define GAUSSIAN_3D\n");
        _shader3D->setAttributeLocation(0, "in_Position");
        _shader3D->setAttributeLocation(1, "in_TexCoord");
76
77
78
79
80
81
82
83
84
85
86

        // create kernel buffer
        tgt::TextureUnit inputUnit;
        inputUnit.activate();

        _kernelBuffer = new tgt::BufferObject(tgt::BufferObject::TEXTURE_BUFFER, tgt::BufferObject::USAGE_STATIC_DRAW);
        glGenTextures(1, &_kernelBufferTexture);
        LGL_ERROR;
    }

    void GlGaussianFilter::deinit() {
87
88
        ShdrMgr.dispose(_shader2D);
        ShdrMgr.dispose(_shader3D);
89
90
91
92
93
94
95
96
97
        delete _kernelBuffer;
        glDeleteTextures(1, &_kernelBufferTexture);

        VisualizationProcessor::deinit();
    }

    void GlGaussianFilter::updateResult(DataContainer& data) {
        ImageRepresentationGL::ScopedRepresentation img(data, p_inputImage.getValue());

98
99
100
101
102
        if (img != 0) {
            if (img->getParent()->getDimensionality() > 1) {
                tgt::ivec3 size = img->getSize();
                int halfKernelSize = static_cast<int>(2.5 * p_sigma.getValue());
                tgtAssert(halfKernelSize < MAX_HALF_KERNEL_SIZE, "halfKernelSize too big -> kernel uniform buffer will be out of bounds!")
103

104
105
                tgt::TextureUnit inputUnit, kernelUnit;
                inputUnit.activate();
106

107
108
109
110
111
112
                // create texture for result
                tgt::Texture* resultTextures[2];
                for (size_t i = 0; i < 2; ++i) {
                    resultTextures[i] = new tgt::Texture(0, size, img->getTexture()->getFormat(), img->getTexture()->getInternalFormat(), img->getTexture()->getDataType(), tgt::Texture::LINEAR);
                    resultTextures[i]->uploadTexture();
                }
113

114
115
116
117
                // create and upload kernel buffer
                GLfloat kernel[MAX_HALF_KERNEL_SIZE];
                for (int i = 0; i <= halfKernelSize; ++i) {
                    kernel[i] = exp(- static_cast<GLfloat>(i*i) / (2.f * p_sigma.getValue() * p_sigma.getValue()));
118
                }
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
                _kernelBuffer->data(kernel, (halfKernelSize + 1) * sizeof(GLfloat), tgt::BufferObject::FLOAT, 1);

                // we need to distinguish 2D and 3D case
                tgt::Shader* leShader = (size.z == 1) ? _shader2D : _shader3D;

                // activate shader
                leShader->activate();
                leShader->setUniform("_halfKernelSize", halfKernelSize);

                // bind kernel buffer texture
                kernelUnit.activate();
                glBindTexture(GL_TEXTURE_BUFFER, _kernelBufferTexture);
                glTexBuffer(GL_TEXTURE_BUFFER, GL_R32F, _kernelBuffer->getId());
                leShader->setUniform("_kernel", kernelUnit.getUnitNumber());
                LGL_ERROR;

                // activate FBO and attach texture
                _fbo->activate();
                glViewport(0, 0, static_cast<GLsizei>(size.x), static_cast<GLsizei>(size.y));

                // start 3 passes of convolution: in X, Y and Z direction:
                {
                    // X pass
                    leShader->setUniform("_direction", tgt::ivec3(1, 0, 0));
                    img->bind(leShader, inputUnit);

                    // render quad to compute difference measure by shader
                    for (int z = 0; z < size.z; ++z) {
                        float zTexCoord = static_cast<float>(z)/static_cast<float>(size.z) + .5f/static_cast<float>(size.z);
                        if (size.z > 1)
                            leShader->setUniform("_zTexCoord", zTexCoord);
                        _fbo->attachTexture(resultTextures[0], GL_COLOR_ATTACHMENT0, 0, z);
                        LGL_ERROR;
                        QuadRdr.renderQuad();
                    }
154
                }
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
                {
                    // Y pass
                    leShader->setUniform("_direction", tgt::ivec3(0, 1, 0));
                    inputUnit.activate();
                    resultTextures[0]->bind();

                    // render quad to compute difference measure by shader
                    for (int z = 0; z < size.z; ++z) {
                        float zTexCoord = static_cast<float>(z)/static_cast<float>(size.z) + .5f/static_cast<float>(size.z);
                        if (size.z > 1)
                            leShader->setUniform("_zTexCoord", zTexCoord);
                        _fbo->attachTexture(resultTextures[1], GL_COLOR_ATTACHMENT0, 0, z);
                        LGL_ERROR;
                        QuadRdr.renderQuad();
                    }
                }
                // we need the third pass only in the 3D case
                if (size.z > 1) {
                    // Z pass
                    leShader->setUniform("_direction", tgt::ivec3(0, 0, 1));
                    inputUnit.activate();
                    resultTextures[1]->bind();

                    // render quad to compute difference measure by shader
                    for (int z = 0; z < size.z; ++z) {
                        float zTexCoord = static_cast<float>(z)/static_cast<float>(size.z) + .5f/static_cast<float>(size.z);
                        leShader->setUniform("_zTexCoord", zTexCoord);
                        _fbo->attachTexture(resultTextures[0], GL_COLOR_ATTACHMENT0, 0, z);
                        LGL_ERROR;
                        QuadRdr.renderQuad();
                    }
                }
                else {
                    // in the 2D case we just swap the result textures, so that we write the correct image out in the lines below.
                    std::swap(resultTextures[0], resultTextures[1]);
190
191
                }

192
193
194
                _fbo->detachAll();
                _fbo->deactivate();
                leShader->deactivate();
195

196
197
198
199
200
                // put resulting image into DataContainer
                ImageData* id = new ImageData(3, size, img->getParent()->getNumChannels());
                ImageRepresentationGL::create(id, resultTextures[0]);
                id->setMappingInformation(img->getParent()->getMappingInformation());
                data.addData(p_outputImage.getValue(), id);
201

202
                delete resultTextures[1];
203

204
205
206
207
208
209
                tgt::TextureUnit::setZeroUnit();
                LGL_ERROR;
            }
            else {
                LERROR("Supports only 2D and 3D Gaussian Blur.");
            }
210
211
212
213
214
215
216
217
218
        }
        else {
            LERROR("No suitable input image found.");
        }

        validate(INVALID_RESULT);
    }
    
}