README.md 5.39 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Graph Search-Based Motion Planner with Motion Primitives

This is a programming exercise for the lecture **Introduction to Artificial Intelligence** (WS19) delivered at the  Department of Informatics, TUM. Please clone this repository or download it using the button at the upper-right corner. The repository has the following folder structure:
``` code-block:: text
commonroad-search/
	├GSMP/
		├motion_automata/
			├automata/
			├motion_primitives/
			└vehicle_model/
		└tools/
			├commonroad-collision-checker/
			└commonroad-road-boundary/
	├notebooks/	
		├batch_processing/
		├motion_primitives_generator/
		└tutorials/
	├scenarios/
Edmond Irani Liu's avatar
Edmond Irani Liu committed
19
20
		├exercise/
		└tutorial/
21
22
	└solutions/ 
```
23
The codes are written in Python 3.7 and tested on Ubuntu 18.04. 
Moritz Klischat's avatar
Moritz Klischat committed
24

25
## Ways to Install
Moritz Klischat's avatar
Moritz Klischat committed
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
You can either install the softwares on your own machine, use a virtual machine image or run a docker image.

1. Please follow the installation guide below if you are using your own machine.
2. Alternatively, you can use the virtual machine image provide by us, in which all the necessary modules are installed already. You can down the virtual machine image via [this](https://syncandshare.lrz.de/dlpw/fi2BN8NUepqiQzfG3LzWYf4J/Virtual_Machine.zip) link and run it in Virtual Box. The downloading password and default login password are both `commonroad`. 
3. Also, you can run a docker image provided by Tom Dörr. After installing docker, you can run the image using command

```sh
docker run -it -p 9000:8888 --mount src="$(pwd)",target=/commonroad-search,type=bind tomdoerr/commonroad-search
```

​		and open the Jupyter Notebook by visiting `localhost:9000` in your web browser.

After you have set up your environment, please further proceed with `notebooks/tutorials/0_Guide_for_Exercise.pdf`. 

## Installation guide

`Skip this section if you intend to use the provided virtual machine or docker image.`
Edmond Irani Liu's avatar
Edmond Irani Liu committed
44

45
46
47
48
49
We recommend using [Anaconda](https://www.anaconda.com/) to manage your environment so that even if you mess up something, you can always have a safe and clean restart. A guide for managing the environments can be found [here](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html). Also, the usage of [PyCharm](https://www.jetbrains.com/pycharm/) is highly recommended (free version available for students).

After installing Anaconda, create a new environment by command:
``` sh
 $ conda create -n commonroad-py37 python=3.7
Moritz Klischat's avatar
Moritz Klischat committed
50
```
51
52
53
54
55

Here the name of the environment is called **commonroad-py37**. You may also change this name as you wish. In such case, don't forget to change it in the following commands as well.

`Always activate` this environment before you do anything related:

Moritz Klischat's avatar
Moritz Klischat committed
56
```sh
57
58
  $ conda activate commonroad-py37
  or
Moritz Klischat's avatar
Moritz Klischat committed
59
60
  $ source activate commonroad-py37
```
61
Install `Jupyter Notebook` and supplementary modules:
Moritz Klischat's avatar
Moritz Klischat committed
62
```sh
63
  $ conda install jupyter
Moritz Klischat's avatar
Moritz Klischat committed
64
  $ conda install ipykernel
65
  $ pip install ipython-autotime
Moritz Klischat's avatar
Moritz Klischat committed
66
67
  $ conda install ipywidgets
  $ conda install sphinx
68
69
  $ jupyter nbextension install --py widgetsnbextension --user
  $ jupyter nbextension enable widgetsnbextension --user --py
Moritz Klischat's avatar
Moritz Klischat committed
70
71
```

72
This exercise has three main dependencies that need to be installed.
Moritz Klischat's avatar
Moritz Klischat committed
73

74
### 1. CommonRoad-io
Moritz Klischat's avatar
Moritz Klischat committed
75

76
As documented in CommonRoad-io [Documentation](https://commonroad.in.tum.de/static/docs/commonroad-io/index.html), type in the following command to install the package:
Moritz Klischat's avatar
Moritz Klischat committed
77
78

```sh
79
  $ pip install commonroad-io
Moritz Klischat's avatar
Moritz Klischat committed
80
81
82
83
```


### 2. CommonRoad-Collision-Checker
84
Go to folder `GSMP/tools/commonroad-collision-checker/` and follow the instruction in README.rst. (You may navigate to it from this page by  for a better rendering of the .rst file)
Moritz Klischat's avatar
Moritz Klischat committed
85

86
A tutorial of CommonRoad Collision Checker can be found [here](https://commonroad.in.tum.de/tutorials/).
Moritz Klischat's avatar
Moritz Klischat committed
87

88
89
### 3. CommonRoad-Road-Boundary
Go to folder `GSMP/tools/commonroad-road-boundary/` and follow the instruction in README.md. (You may navigate to it from this page by  for a better rendering of the .md file) In case you face an error, refer to troubleshooting section. 
Moritz Klischat's avatar
Moritz Klischat committed
90

91
92
93
94
## Tutorials

Navigate your terminal to `commonroad-search/` folder, and start Jupyter Notebook with:
```shell
Moritz Klischat's avatar
Moritz Klischat committed
95
96
97
  $ jupyter notebook
```

98
In the prompt up page, navigate to `notebooks/tutorials/` and follow the tutorials `tutorial_commonroad-io.ipynb` and `tutorial_commonroad-search.ipynb`.  Remember to refer to `tutorials/0_Guide_for_Exercise.pdf` for additional explanation. The executed Jupyter notebooks for tutorials can also be found [here](https://commonroad.in.tum.de/tutorials/).
Moritz Klischat's avatar
Moritz Klischat committed
99
100
101

## Implement your own search algorithm

102
Open `GSMP/motion_automata/automata/MotionPlanner.py`. Write your own heuristic functions and/or search algorithm in the following functions:
Moritz Klischat's avatar
Moritz Klischat committed
103
104

```python
105
106
	def calc_heuristic_cost()
	def search_alg()
Moritz Klischat's avatar
Moritz Klischat committed
107
108
```

109
There are already two search algorithms, namely `A*` and `Greedy Best First Search`, implemented as examples for you. You are free to refer to them for some inspiration.
Moritz Klischat's avatar
Moritz Klischat committed
110

111
## Troubleshooting
Moritz Klischat's avatar
Moritz Klischat committed
112

113
### 1. Boundary library not working properly
Moritz Klischat's avatar
Moritz Klischat committed
114

115
116
If there are errors stating not finding the boundary library (e. g. module `construction` not found) while going through the second tutorial, try manually copying all the contents under folder `GSMP/tools/commonroad-road-boundary/`  into `/path/to/your/anaconda3/envs/lib/python3.7/site-packages/commonroad-road-boundary/`. 
`Make sure to copy all files within the folder manually, not just copying the folder it self. Also, remember to add this path to your IDE's (e. g. PyCharm) interpretor path.`