README.md 5.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Graph Search-Based Motion Planner with Motion Primitives

This is a programming exercise for the lecture **Introduction to Artificial Intelligence** (WS19) delivered at the  Department of Informatics, TUM. Please clone this repository or download it using the button at the upper-right corner. The repository has the following folder structure:
``` code-block:: text
commonroad-search/
	├GSMP/
		├motion_automata/
			├automata/
			├motion_primitives/
			└vehicle_model/
		└tools/
			├commonroad-collision-checker/
			└commonroad-road-boundary/
	├notebooks/	
		├batch_processing/
		├motion_primitives_generator/
		└tutorials/
18
	├pdfs/	
19
	├scenarios/
Edmond Irani Liu's avatar
Edmond Irani Liu committed
20
21
		├exercise/
		└tutorial/
22
23
	└solutions/ 
```
24
The codes are written in Python 3.7 and tested on Ubuntu 18.04. 
Moritz Klischat's avatar
Moritz Klischat committed
25

26
## Ways to Install
Moritz Klischat's avatar
Moritz Klischat committed
27

28
29
30
31
32
33
34
35
36
37
You can either install the softwares on your own machine, use a virtual machine image or run a docker image.

1. Please follow the installation guide below if you are using your own machine.
2. Alternatively, you can use the virtual machine image provide by us, in which all the necessary modules are installed already. You can down the virtual machine image via [this](https://syncandshare.lrz.de/dlpw/fi2BN8NUepqiQzfG3LzWYf4J/Virtual_Machine.zip) link and run it in Virtual Box. The downloading password and default login password are both `commonroad`. 
3. Also, you can run a docker image provided by Tom Dörr. After installing docker, you can run the image using command

```sh
docker run -it -p 9000:8888 --mount src="$(pwd)",target=/commonroad-search,type=bind tomdoerr/commonroad-search
```

38
     and open the Jupyter Notebook by visiting `localhost:9000` in your web browser.
39

40
After you have set up your environment, please further proceed with `pdfs/0_Guide_for_Exercise.pdf`. 
41
42
43
44

## Installation guide

`Skip this section if you intend to use the provided virtual machine or docker image.`
Edmond Irani Liu's avatar
Edmond Irani Liu committed
45

46
47
48
49
50
We recommend using [Anaconda](https://www.anaconda.com/) to manage your environment so that even if you mess up something, you can always have a safe and clean restart. A guide for managing the environments can be found [here](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html). Also, the usage of [PyCharm](https://www.jetbrains.com/pycharm/) is highly recommended (free version available for students).

After installing Anaconda, create a new environment by command:
``` sh
 $ conda create -n commonroad-py37 python=3.7
Moritz Klischat's avatar
Moritz Klischat committed
51
```
52
53
54
55
56

Here the name of the environment is called **commonroad-py37**. You may also change this name as you wish. In such case, don't forget to change it in the following commands as well.

`Always activate` this environment before you do anything related:

Moritz Klischat's avatar
Moritz Klischat committed
57
```sh
58
59
  $ conda activate commonroad-py37
  or
Moritz Klischat's avatar
Moritz Klischat committed
60
61
  $ source activate commonroad-py37
```
62
Install `Jupyter Notebook` and supplementary modules:
Moritz Klischat's avatar
Moritz Klischat committed
63
```sh
64
  $ conda install jupyter
Moritz Klischat's avatar
Moritz Klischat committed
65
  $ conda install ipykernel
66
  $ pip install ipython-autotime
Moritz Klischat's avatar
Moritz Klischat committed
67
68
  $ conda install ipywidgets
  $ conda install sphinx
Edmond Irani Liu's avatar
Edmond Irani Liu committed
69
  $ conda install scipy
70
71
  $ jupyter nbextension install --py widgetsnbextension --user
  $ jupyter nbextension enable widgetsnbextension --user --py
Moritz Klischat's avatar
Moritz Klischat committed
72
73
```

74
This exercise has three main dependencies that need to be installed.
Moritz Klischat's avatar
Moritz Klischat committed
75

76
### 1. CommonRoad-io
Moritz Klischat's avatar
Moritz Klischat committed
77

78
As documented in CommonRoad-io [Documentation](https://commonroad.in.tum.de/static/docs/commonroad-io/index.html), type in the following command to install the package:
Moritz Klischat's avatar
Moritz Klischat committed
79
80

```sh
81
  $ pip install commonroad-io
Moritz Klischat's avatar
Moritz Klischat committed
82
83
84
85
```


### 2. CommonRoad-Collision-Checker
86
Go to folder `GSMP/tools/commonroad-collision-checker/` and follow the instruction in README.rst. (You may navigate to it from this page for a better rendering of the .rst file)
Moritz Klischat's avatar
Moritz Klischat committed
87

88
A tutorial of CommonRoad Collision Checker can be found [here](https://commonroad.in.tum.de/tutorials/).
Moritz Klischat's avatar
Moritz Klischat committed
89

90
### 3. CommonRoad-Road-Boundary
91
Go to folder `GSMP/tools/commonroad-road-boundary/` and follow the instruction in README.md. (You may navigate to it from this page for a better rendering of the .md file) In case you face an error, refer to troubleshooting section. 
Moritz Klischat's avatar
Moritz Klischat committed
92

93
94
95
96
## Tutorials

Navigate your terminal to `commonroad-search/` folder, and start Jupyter Notebook with:
```shell
Moritz Klischat's avatar
Moritz Klischat committed
97
98
99
  $ jupyter notebook
```

100
In the prompt up page, navigate to `notebooks/tutorials/` and follow the tutorials `tutorial_commonroad-io.ipynb` and `tutorial_commonroad-search.ipynb`.  Remember to refer to `pdfs/0_Guide_for_Exercise.pdf` for additional explanation. The executed Jupyter notebooks for tutorials can also be found [here](https://commonroad.in.tum.de/tutorials/).
Moritz Klischat's avatar
Moritz Klischat committed
101
102
103

## Implement your own search algorithm

104
Open `GSMP/motion_automata/automata/MotionPlanner.py`. Write your own heuristic functions and/or search algorithm in the following functions:
Moritz Klischat's avatar
Moritz Klischat committed
105
106

```python
107
108
	def calc_heuristic_cost()
	def search_alg()
Moritz Klischat's avatar
Moritz Klischat committed
109
110
```

111
There are already two search algorithms, namely `A*` and `Greedy Best First Search`, implemented as examples for you. You are free to refer to them for some inspiration.
Moritz Klischat's avatar
Moritz Klischat committed
112

113
## Troubleshooting
Moritz Klischat's avatar
Moritz Klischat committed
114

115
### 1. Boundary library not working properly
Moritz Klischat's avatar
Moritz Klischat committed
116

117
118
If there are errors stating not finding the boundary library (e. g. module `construction` not found) while going through the second tutorial, try manually copying all the contents under folder `GSMP/tools/commonroad-road-boundary/`  into `/path/to/your/anaconda3/envs/lib/python3.7/site-packages/commonroad-road-boundary/`. 
`Make sure to copy all files within the folder manually, not just copying the folder it self. Also, remember to add this path to your IDE's (e. g. PyCharm) interpretor path.`