route.py 16.2 KB
 Edmond Irani Liu committed Nov 13, 2020 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ``````import itertools import warnings from enum import Enum from typing import List, Union, Tuple from typing import Set import numpy as np from commonroad.planning.planning_problem import PlanningProblem from commonroad.scenario.scenario import Scenario from SMP.route_planner.route_planner.utils_route import chaikins_corner_cutting, resample_polyline, sort_lanelet_ids_by_orientation, \ sort_lanelet_ids_by_goal try: import pycrccosy except ModuleNotFoundError as exp: `````` Edmond Irani Liu committed Nov 13, 2020 17 18 19 `````` pass # warnings.warn(f"""You won't be able to use the Curvilinear Coordinate System for the Navigator, # the calculations won't be precise. {exp}""") `````` Edmond Irani Liu committed Nov 13, 2020 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 `````` class RouteType(Enum): # Survival routes have no specific goal lanelet REGULAR = "regular" SURVIVAL = "survival" class Route: """Class to represent a route in the scenario""" def __init__(self, scenario: Scenario, planning_problem: PlanningProblem, list_ids_lanelets: List[int], route_type: RouteType, set_ids_lanelets_permissible: Set[int] = None): self.scenario = scenario self.planning_problem = planning_problem self.lanelet_network = scenario.lanelet_network # a route is created given the list of lanelet ids from start to goal self.list_ids_lanelets = list_ids_lanelets self.type = route_type # a section is a list of lanelet ids that are adjacent to a lanelet in the route self.list_sections = list() self.set_ids_lanelets_in_sections = set() self.set_ids_lanelets_opposite_direction = set() if set_ids_lanelets_permissible is None: self.set_ids_lanelets_permissible = {lanelet.lanelet_id for lanelet in self.lanelet_network.lanelets} else: self.set_ids_lanelets_permissible = set_ids_lanelets_permissible self.reference_path = self._generate_reference_path() def retrieve_route_sections(self, is_opposite_direction_allowed: bool = False) -> Union[None, List[List[int]]]: """Retrieves route sections for lanelets in the route A section is a list of lanelet ids that are adjacent to a given lanelet. """ if not self.list_sections: # compute list of sections for id_lanelet in self.list_ids_lanelets: # for every lanelet in the route, get its adjacent lanelets list_ids_lanelets_in_section = self._get_adjacent_lanelets_ids(id_lanelet, is_opposite_direction_allowed) # add lanelet from the route too list_ids_lanelets_in_section.append(id_lanelet) list_ids_lanelets_in_section.sort() if len(self.list_sections) == 0: self.list_sections.append(list_ids_lanelets_in_section) elif self.list_sections[-1] != list_ids_lanelets_in_section: # only add new sections if it is not the same as the last section self.list_sections.append(list_ids_lanelets_in_section) for section in self.list_sections: for id_lanelet in section: self.set_ids_lanelets_in_sections.add(id_lanelet) return self.list_sections def _get_adjacent_lanelets_ids(self, id_lanelet: int, is_opposite_direction_permissible=False) -> list: """Recursively gets adj_left and adj_right lanelets of the given lanelet :param id_lanelet: current lanelet id :param is_opposite_direction_permissible: specifies if it should give back only the lanelets in the driving direction or it should give back the first neighbouring lanelet in the opposite direction :return: list of adjacent lanelet ids: all lanelets which are going in the same direction and one-one from the left and right side which are going in the opposite direction, empty lists if there are none """ list_lanelets_adjacent = list() lanelet_base = self.lanelet_network.find_lanelet_by_id(id_lanelet) # goes in left direction lanelet_current = lanelet_base id_lanelet_temp = lanelet_current.adj_left while id_lanelet_temp is not None: # set this lanelet as the current if it goes in the same direction and iterate further if id_lanelet_temp in self.set_ids_lanelets_permissible: if lanelet_current.adj_left_same_direction: # append the left adjacent lanelet list_lanelets_adjacent.append(id_lanelet_temp) # update lanelet_current lanelet_current = self.lanelet_network.find_lanelet_by_id(id_lanelet_temp) id_lanelet_temp = lanelet_current.adj_left else: # if the lanelet is in opposite direction, we add them into a set # if driving in opposite lanelet is allowed, they can be traversed too to form the route self.set_ids_lanelets_opposite_direction.add(id_lanelet_temp) if is_opposite_direction_permissible: list_lanelets_adjacent.append(id_lanelet_temp) break else: # it is not allowed to drive in that lane, so just break break # goes in right direction lanelet_current = lanelet_base id_lanelet_temp = lanelet_current.adj_right while id_lanelet_temp is not None: # set this lanelet as the current if it goes in the same direction and iterate further if id_lanelet_temp in self.set_ids_lanelets_permissible: if lanelet_current.adj_right_same_direction: # append the right adjacent lanelet list_lanelets_adjacent.append(id_lanelet_temp) # Update lanelet_current lanelet_current = self.lanelet_network.find_lanelet_by_id(id_lanelet_temp) id_lanelet_temp = lanelet_current.adj_right else: # if the lanelet is in opposite direction, we add them into a set # if driving in opposite lanelet is allowed, they can be traversed too to form the route self.set_ids_lanelets_opposite_direction.add(id_lanelet_temp) if is_opposite_direction_permissible: list_lanelets_adjacent.append(id_lanelet_temp) break else: # it is not allowed to drive in that lane, so just break break return list_lanelets_adjacent def _generate_reference_path(self) -> np.ndarray: """Generates a reference path (polyline) out of the given route This is done in four steps: 1. compute lane change instructions 2. compute the portion of each lanelet based on the instructions 3. compute the reference path based on the portion 4. smoothen the reference path :return: reference path in 2d numpy array ([[x0, y0], [x1, y1], ...]) """ instruction = self._compute_lane_change_instructions() list_portions = self._compute_lanelet_portion(instruction) reference_path = self._compute_reference_path(list_portions) reference_path_smoothed = chaikins_corner_cutting(reference_path, num_refinements=6) return reference_path def _compute_lane_change_instructions(self) -> List[int]: """Computes lane change instruction for planned routes The instruction is a list of 0s and 1s, with 0 indicating no lane change is required (driving straight forward0, and 1 indicating that a lane change (to the left or right) is required. """ list_instructions = [] for idx, id_lanelet in enumerate(self.list_ids_lanelets[:-1]): if self.list_ids_lanelets[idx + 1] in self.lanelet_network.find_lanelet_by_id(id_lanelet).successor: list_instructions.append(0) else: list_instructions.append(1) # add 0 for the last lanelet list_instructions.append(0) return list_instructions @staticmethod def _compute_lanelet_portion(list_instructions: List) -> List[Tuple[float, float]]: """Computes the portion of the center vertices of the lanelets required to construct the reference path This is done by first grouping the instructions into consecutive sections (each with only 0s or 1s). For the group of 0s, as no lane change is required, the whole lanelet is used; for the group of 1s, the upper limit of the portion is computed within the group as (idx_lanelet in the group) / (num_lanelets). For example, if there are three consecutive lane changes (assuming three lanes are all parallel), the proportion would be [0 - 0.25], [0.25 -0.5], [0.5 - 0.75] and [0.75 - 1.0] for these four lanes. """ # returns a list of consecutive instructions # e.g. input: [0, 0, 1, 1, 0, 1] output: [[0, 0], [1, 1], [0], [1]] list_instructions_consecutive = [list(v) for k, v in itertools.groupby(list_instructions)] list_bounds_upper = [] list_bounds_lower = [0.] for instructions in list_instructions_consecutive: for idx, instruction in enumerate(instructions): if instruction == 0: # goes till the end of the lanelet bound_upper = 1. else: # goes only till a specific portion bound_upper = (idx + 1) / (len(instructions) + 1) list_bounds_upper.append(bound_upper) if len(list_bounds_upper) > 1: for idx in range(1, len(list_bounds_upper)): if np.isclose(list_bounds_upper[idx - 1], 1.): list_bounds_lower.append(0.) else: list_bounds_lower.append(list_bounds_upper[idx - 1]) assert len(list_bounds_lower) == len(list_bounds_upper) == len(list_instructions), \ f"The lengths of portions do not match." return [(lower, upper) for lower, upper in zip(list_bounds_lower, list_bounds_upper)] def _compute_reference_path(self, list_portions, num_vertices_lane_change_max=5, percentage_vertices_lane_change_max=0.1): """Computes reference path given the list of portions of each lanelet :param list_portions :param num_vertices_lane_change_max: number of vertices to perform lane change. if set to 0, it will produce a zigzagged polyline. :param percentage_vertices_lane_change_max: maximum percentage of vertices that should be used for lane change. """ reference_path = None for idx, id_lanelet in enumerate(self.list_ids_lanelets): lanelet = self.lanelet_network.find_lanelet_by_id(id_lanelet) # resample the center vertices to prevent too few vertices with too large distances vertices_resampled = resample_polyline(lanelet.center_vertices, 2) num_vertices = len(vertices_resampled) num_vertices_lane_change = min(int(num_vertices * percentage_vertices_lane_change_max) + 1, num_vertices_lane_change_max) if reference_path is None: idx_start = int(list_portions[idx][0] * num_vertices) idx_end = int(list_portions[idx][1] * num_vertices) - num_vertices_lane_change # prevent index out of bound idx_end = max(idx_end, 1) reference_path = vertices_resampled[idx_start:idx_end, :] else: idx_start = int(list_portions[idx][0] * num_vertices) + num_vertices_lane_change # prevent index out of bound idx_start = min(idx_start, num_vertices - 1) idx_end = int(list_portions[idx][1] * num_vertices) - num_vertices_lane_change # prevent index out of bound idx_end = max(idx_end, 1) path_to_be_concatenated = vertices_resampled[idx_start:idx_end, :] reference_path = np.concatenate((reference_path, path_to_be_concatenated), axis=0) return reference_path class RouteCandidateHolder: """Class to hold route candidates generated by the route planner""" def __init__(self, scenario: Scenario, planning_problem: PlanningProblem, list_route_candidates: List[List[int]], route_type: RouteType, set_ids_lanelets_permissible: Set): self.scenario = scenario self.planning_problem = planning_problem self.lanelet_network = self.scenario.lanelet_network # create a list of Route objects for all routes found by the route planner which is not empty self.list_route_candidates = [Route(scenario, planning_problem, route, route_type, set_ids_lanelets_permissible) for route in list_route_candidates if route] self.num_route_candidates = len(self.list_route_candidates) if set_ids_lanelets_permissible is None: self.set_ids_lanelets_permissible = {lanelet.lanelet_id for lanelet in self.lanelet_network.lanelets} else: self.set_ids_lanelets_permissible = set_ids_lanelets_permissible self.route_type = route_type def retrieve_first_route(self) -> Route: return self.list_route_candidates[0] def retrieve_best_route_by_orientation(self) -> Union[Route, None]: """Retrieves the best route found by some orientation metrics If it is the survival scenario, then the first route with idx 0 is returned. """ if not len(self.list_route_candidates): return None if self.route_type == RouteType.SURVIVAL: return self.retrieve_first_route() else: state_current = self.planning_problem.initial_state # sort the lanelets in the scenario based on their orientation difference with the initial state list_ids_lanelets_initial_sorted = sort_lanelet_ids_by_orientation( self.scenario.lanelet_network.find_lanelet_by_position([state_current.position])[0], state_current.orientation, state_current.position, self.scenario ) # sort the lanelets in the scenario based on the goal region metric list_ids_lanelets_goal_sorted = sort_lanelet_ids_by_goal(self.scenario, self.planning_problem.goal) list_ids_lanelet_goal_candidates = np.array( [route_candidate.list_ids_lanelets[-1] for route_candidate in self.list_route_candidates]) for id_lanelet_goal in list_ids_lanelets_goal_sorted: if id_lanelet_goal in list_ids_lanelet_goal_candidates: list_ids_lanelets_initial_candidates = list() for route_candidate in self.list_route_candidates: if route_candidate.list_ids_lanelets[-1] == id_lanelet_goal: list_ids_lanelets_initial_candidates.append(route_candidate.list_ids_lanelets[0]) else: list_ids_lanelets_initial_candidates.append(None) list_ids_lanelets_initial_candidates = np.array(list_ids_lanelets_initial_candidates) for initial_lanelet_id in list_ids_lanelets_initial_sorted: if initial_lanelet_id in list_ids_lanelets_initial_candidates: route = self.list_route_candidates[ np.where(list_ids_lanelets_initial_candidates == initial_lanelet_id)[0][0]] return route return None def retrieve_all_routes(self) -> Tuple[List[Route], int]: """ Returns the list of Route objects and the total number of routes""" return self.list_route_candidates, self.num_route_candidates def __repr__(self): return f"{len(self.list_route_candidates)} routeCandidates of scenario {self.scenario.scenario_id}, " \ f"planning problem {self.planning_problem.planning_problem_id}" def __str__(self): return self.__repr__()``````