
Grundlagen der Künstlichen Intelligenz
Programming Exercise: Graph Search-Based Motion Planner with Motion Primitives
Edmond Irani Liu, Prof. Matthias Althoff Last updated: November 13, 2019

Finding safe motions in complex traffic situation is one of the major challenges in autonomous driving.
Typically, one has to develop a large software framework before one can start developing new motion plan-
ning techniques. Such a framework typically includes software for representing road networks, reasoning on
the networks, collision checking, simulating vehicle dynamics, and visualizing results, to name only a few
aspects. Under CommonRoad software framework, all of these are taken care of. A standard CommonRoad
scenario taken from the Stachus intersection in Munich is shown in Fig.1.

lanelet (road)

lanelet (rail)

road vehicle

tram

driving direction

ego vehicle

right bound

left bound

lanelets

Figure 1: Visualization of Stachus in the city center of Munich under CommonRoad

To further facilitate the use of CommonRoad, we have written tutorials which demonstrate basic func-
tionality of CommonRoad in a step-by-step manner. CommonRoad also contains a benchmark to which you
can upload your solutions to the motion planning problems and see how well you perform in comparison
to others. While initially most of the uploads will come from the students of this course, we will further
promote the benchmark worldwide and also organize a competition with a prize.

1 Installation
Please make sure to clone or download the CommonRoad Search repository before you proceed.

1.1 Regular Installation
Please follow the instructions given in commonroad-search/README.md if you wish to install the software
on your own machine.

1.2 Virtual Machine
We provide you with a Virtual Box image of Lubuntu 18.04 (ca. 6.5 GB after unzipping), in which all nec-
essary modules are installed. Please download it via this link. The downloading password and default login
password are both commonroad. In the terminal, please navigate to /home/commonroad/repos/commonroad-
search/ and use the command jupyter notebook to launch the Jupyter notebook. If a warning prompts up
showing that no kernel is found, please proceed by selecting python3.

1

commonroad.in.tum.de
https://gitlab.lrz.de/tum-cps/commonroad-search
https://www.virtualbox.org/
https://syncandshare.lrz.de/dlpw/fi2BN8NUepqiQzfG3LzWYf4J/Virtual_Machine.zip

1.3 Docker
Tom Dörr has provided a docker image for this exercise. After installing docker, you can run the image
using command docker run -it -p 9000:8888 –mount src=“$(pwd)”, target=/commonroad-search,type=bind
tomdoerr/commonroad-search, and open the Jupyter Notebook interface by visiting localhost:9000 in your
web browser.

2 CommonRoad Scenarios
Before implementing the search algorithm, it is essential to correctly understand the structure of motion
planning problems in CommonRoad, which consists of:

• Road network: The road network consists of a series of road segments which are called lanelets. A
lanelet is defined by its left and right bound, where each bound is represented by an array of points
(a polyline), as shown in Fig.2.

• Obstacles: A scenario typically has both static and dynamic obstacles. Static obstacles do not move
over time, such as construction zones and parked vehicles. Dynamic obstacle are moving objects and
are mostly traffic participants, such as cars, trucks, motorbikes, bicycle riders, pedestrians and so on.
For both of these obstacles, a geometry shape is provided; for dynamic obstacles, the movement over
time is given by a trajectory, which is essentially a list of states over time.

• Initial state: The initial state of the planning problem has the following values:

– Position: A two-dimensional vector [x, y]T in [m].
– Steering Angle: A scalar δ in [rad].
– Velocity: A scalar v in [m/s].
– Orientation: A scalar θ ∈ [−π, π] in [rad].

• Goal region: The goal region of the planning problem is constructed from the Cartesian product of:

– Position Region: A two-dimensional polygon within R2 ; each axis has the unit [m].
– Orientation Interval: An interval of allowed orientation in [rad].
– Velocity Interval: An interval of allowed velocities in [m/s].
– Time Interval: An interval of allowed time of arriving at the goal region in [s].

Figure 2: An example of lanelet.

Please note that all time stamps in CommonRoad are represented by an integer k. The time in seconds
is implicitly given by the fixed, global time step size r (usually set to 0.1 second) of the scenario, so that

2

t = kr. For example, time stamp k = 61 corresponds to time t = 6.1s, given that r is set to 0.1s.

A valid solution trajectory to a planning problem satisfies the following conditions:

• It starts at the initial state of the planning problem.
• It reaches the goal region of the planning problem within the given time interval.
• A vehicle does not collide with any obstacle and stays on the road while following this trajectory.
• The trajectory comply with a given vehicle model. In this tutorial, we assume that the Kinematic

Single-Track model is used. See here for more details.

Please refer to pdfs/1.Brief Introduction to CommonRoad io.pdf and notebooks/tutorials/
tutorial commonroad-io.ipynb for a brief introduction and a practical tutorial on CommonRoad-io, respec-
tively.

3 Software Documentation
Your task is to implement a heuristic function and/or a search algorithm of your choice for the motion
planning problems. Specifically, this algorithm should produce a trajectory by concatenating given motion
primitives. A motion primitive is a short trajectory whose drivability under certain vehicle models is guar-
anteed. Fig.3 shows an exemplary search tree that is spanned via motion primitives, where the initial / final
states are indicated by dots. Every short trajectory between two successive dots is a motion primitive.

For this exercise we provide approximately 3000 motion primitives. These primitives all start at po-
sition [x = 0, y = 0]T , have a duration of 0.5 seconds and differ in velocity, steering angle, orientation,
acceleration, and length. If the velocity and the steering angle of the first state of a following primitive are
equal those of the last state of a preceding primitive, we say these two primitives are connectable. note-
books/tutorials/motion primitives generator.ipynb demonstrates how are the motion primitives generated.

Figure 3: A search tree with motion primitives.

Within motion automata/automata/MotionPlanner.py, we have already implemented a MotionPlanner
class for your convenience. Some of its attributes are:
• startLanelet ids: Ids of the lanelets on which the start position is.
• goalLanelet ids: Ids of the lanelets on which the goal region is.
• desired time: Time interval in which the ego vehicle has to arrive at the goal region.
• desired orientation: Desired orientation interval at the goal region.
• desired velocity: Desired velocity interval at the goal region.
• priority queue: A priority queue used within the algorithm.
• initial distance: Distance between initial state and the center of the goal region.
• lanelet cost: The dictionary lanelet cost returns a cost for each lanelet, which is equal to the number

of number of lanelets to be traversed from each lanelet to reach the goal region. The function returns
-1 if it is impossible to reach the goal region from the current lanelet. If the goal region is contained
within current lanelet, the cost will be 0.

3

https://gitlab.lrz.de/tum-cps/commonroad-vehicle-models/blob/master/vehicleModels_commonRoad.pdf

Besides these attributes, we have also provided some helper functions to solve for the trajectory. A
detailed description of these helper functions can be found in the documentation of the class. For a quick
familiarization with the available functions, we summarize them below:

• distance: takes two points in 2D plane as inputs, and calculates their distance according to a distance
metric. We provide the following metrics: Euclidean, Manhattan and Chebyshev distances.

• dist to closest obstacle: Returns the Euclidean distance to the closest obstacle in a lanelet. If there
is no obstacle in the segment the function returns ∞.

• check collision: To guarantee safety, it is important to ensure that the vehicle does not collide with
other obstacles while following the trajectory. Therefore, a collision checker is provided which checks
if a collision occurs for all states of the planned trajectory. Furthermore, the collision checker also
investigates if the vehicle stays on the road network in the scenario.

• reached goal: Returns true if all conditions of the goal region are satisfied.

• remove states behind goal: Removes all states of a motion primitive that the vehicle would follow
after reaching the goal region.

• translate primitive to current pos: Translates a motion primitive to current position. Note: All
motion primitives start at position [0, 0]T .

• append path: Concatenates a motion primitive to current trajectory.

• get successor primitives: Returns all possible successive motion primitives of the given motion
primitive.

• is goal in lane: A Boolean function which returns true if the goal is reachable by recursively following
the successive lanelets of the given lanelet.

• calc time cost: Returns the time needed to follow the motion primitive.

• calc path efficiency: Returns the ratio of traveled distance of the motion primitives to the time
needed to follow such motion primitives.

• calc angle to goal: The orientation to the goal is calculated based on the current position and the
center of the goal region.

• curvature of polyline: Returns the absolute sum of all local curvatures of a polyline. This function
can be used to penalize non-smooth trajectories in order to derive a trajectory with higher comfort
for the passengers.

• orientation diff: Returns the difference of two given orientations. The result falls in the range of
[−π, π].

• num obstacles in lanelet at time step: Returns the number of obstacles in the given lanelet at
given time step.

• calc heuristic distance: Summed absolute distance from every state along the motion primitive to
the center line of the lanelet. Furthermore, the lanelet of the first and the last state are returned. This
value can be used to penalize movements that have a large deviation from the center line of a lane.

• calc lanelet orientation: Returns the orientation of the lanelet at the specified position.

• length of polyline: Returns the length of a polyline.

Note: You do not have to use all of these attributes and functions. You are also free to come up with
your own ideas and to combine them together to search for trajectories within a reasonable time.

For understanding the provided source code under motion automata/automata, we suggest the following
reading order:

1. States.py: a start state class and a final state class are defined for motion primitives.

4

https://commonroad.in.tum.de/static/docs/commonroad-search/api/MotionPlanner.html#motion-planner

2. MotionPrimitive.py: the MotionPrimitive class and some of its operations are defined.

3. MotionPrimitiveParser.py: a helper class to read in and parse the pre-generated motion primitive data
is defined.

4. MotionAutomata.py: the MotionAutomata class which reads in and manipulates motion primitives is
defined.

5. MotionPlanner(*).py: definition of MotionPlanner class. Note that we have provided some exemplary
planners for your reference.

Finally, please refer to notebooks/tutorials/tutorial commonroad-search.ipynb for a practical tutorial on
how to execute the search.

4 Task & Evaluation
You should implement your own heuristic function and/or search algorithm. You are free to refer to, add
and change the two already implemented motion planners. After implementing your own code, you should
evaluate its performance on a series of scenarios. To pass the programming exercise, you should solve at
least 110 planning problems (scenarios) of your choice out of the nearly 300 existing scenarios. Note that
even if you submit more solutions to a scenario or merely change the cost function, it will still be considered
as solving 1 scenario.

To select the scenario of your choice, please refer to CommonRoad Scenarios and its repository. The
ranking of your solutions in the benchmark is irrelevant to your passing of the exercise. However, if you are
ambitious enough, you might want to submit solutions with a higher ranking. A better search algorithm
also helps you to get closer to the best student’s reward :)

5 Tips on Heuristic Function
Searching blindly in a high-dimensional graph can be very resource-consuming (e.g. time, memory, etc.), and
having a well-thought-out heuristic function can dramatically decrease the amount of need for such resources.
Generally, we want to reward states that lead us closer to the goal state while obeying some constraints. As
the initial state of the planning problem and the goal region both could have state components including
position, velocity, orientation, etc., we can try to formulate a heuristic function that penalizes large deviation
to the goal state by considering:

• positional distance: the positional distance (in Euclidean, Manhattan or other distances) between
the (x, y) position of a given state and the goal region (e.g. center of goal region).

• velocity difference: the velocity difference between the velocity of a given state and the goal state
(e.g. center of the desired velocity interval).

• orientation difference: the orientation difference between the orientation of a given state and the
goal state (e.g. center of the desired orientation interval).

• time difference: the time difference between the time step of a given state and the goal state (e.g.
center of the desired time step interval).

Besides these state components, one might also want to consider some other factors such as:

• lanelet id: we can retrieve the id of the lanelet on which the state is located. By this we can determine
whether the examined state is located on the lanelet of the goal state, and reward such states.

• obstacles on lanelet: contrary to previous metric, if there are obstacles located on the lanelet of the
goal state, we might want to make a lane change, thus penalizing such states.

• trajectory efficiency: we can calculate the ratio of the length of the trajectory travelled so far to
the time required to travel such a trajectory.

5

https://commonroad.in.tum.de/scenarios/
https://gitlab.lrz.de/tum-cps/commonroad-scenarios

More often than not, these calculated metrics are accompanied by different weights to collectively form
the final heuristic function; however, mostly we are only able to make a guess of these weights and fine-tune
them empirically. The ultimate heuristic function will have the following form:

h(state) =
∑

i

weighti ×metrici

As a reference, you may find more explanation on planning algorithms in the book Planning Algorithms
by LaValle.

6 Uploading Solutions
Your solutions should be uploaded to CommonRoad Benchmark. Prior to uploading the solutions, you
should create an user account and log in with it. Instructions on how to upload the solutions are provided
on the website. Only PUBLISHED solutions with SUCCESS status are considered submitted.

Figure 4: Feasible & published solution.

6.1 Benchmark ID
The full benchmark ID is composed of three parts. Let us introduce the IDs of the vehicle Model, the Cost
function, the Scenario, and the Benchmark via letters M, C, S and B, respectively. The benchmark ID is
constructed by separating partial IDs with colons and has the following form:

B = M:C:S
For instance, for M=KS2, C=JB1, S=OV001, the benchmark ID B will be KS2:JB1:OV001. The vehicle

model is a differential equation representing the vehicle dynamics. For this exercise, the vehicle is modeled
via a Kinematic Single-Track model.

6.2 Cost Function
The performance of your solutions are evaluated via cost functions. The general form of cost functions is
depicted by

JC(x(t), u(t), t0, tf) = ΦC(x(t0), t0, x(tf), tf) +
∫ tf

t0

LC(x(t), u(t), t)dt,

where ΦC is the terminal cost and LC is the running cost. Given a cost ID, the functions ΦC and
LC can be uniquely determined. A list of possible cost functions is provided in Table.1 in Cost Function
Documentation. As your solution will be evaluated based on the indicated cost function in the solution
file, to achieve a higher rank, try using a similar cost function in your own planner. Please do not use cost
function JB1, as it only considers the time of the trajectory, which will result in having same costs even if
you used different planners. Acceptable cost functions are: SA1, WX1, SM1, SM2 and SM3.

6.3 Batch Processing
If you wish to find the solution to a batch of scenarios at once, you can make use of the batch processing
script provided in notebooks/batch processing/batch processing.ipynb. While uploading the solutions, you
can also select multiple solutions to submit them at once.

6

http://planning.cs.uiuc.edu/
https://commonroad.in.tum.de/submissions/create
https://gitlab.lrz.de/tum-cps/commonroad-cost-functions/blob/master/costFunctions_commonRoad.pdf
https://gitlab.lrz.de/tum-cps/commonroad-cost-functions/blob/master/costFunctions_commonRoad.pdf

7 Deadline and Requirements
Final submission of the results will close on Sunday, 08.12.2019 at 23:59. Your submission should at least
consist the following files:

1. Your own implementation of MotionPlanner.py (if you write your own motion planner, make sure they
can be executed with least extra dependencies)

2. Screen-shot of your user profile on CommonRoad website indicating that you have successfully up-
loaded the solutions and they are accepted & published.

3. A zip file containing all of your submitted solutions. (make sure they are in .zip format)

These items should be put directly under the submission folder, i.e., not be put under sub-folders or
be zipped further. If applicable, do not use absolute paths in your code, but instead use relative paths to
the working directory. If you have questions regarding this exercise, please raise them in the CommonRoad
Forum, as other persons may have asked the same questions already.

Lastly, good luck with the exercise and hope you enjoy :)

7

https://commonroad.in.tum.de/forum/
https://commonroad.in.tum.de/forum/

	Installation
	Regular Installation
	Virtual Machine
	Docker

	CommonRoad Scenarios
	Software Documentation
	Task & Evaluation
	Tips on Heuristic Function
	Uploading Solutions
	Benchmark ID
	Cost Function
	Batch Processing

	Deadline and Requirements

