In January 2021 we will introduce a 10 GB quota for project repositories. Higher limits for individual projects will be available on request. Please see https://doku.lrz.de/display/PUBLIC/GitLab for more information.

parameters_vehicle3.m 5.91 KB
Newer Older
Markus Koschi's avatar
Markus Koschi committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
function p = parameters_vehicle3()
% parameters_vehicle3 - parameter set of the multi-body vehicle dynamics 
% based on the DOT (department of transportation) vehicle dynamics;
% values are taken from a VW Vanagon
%
% Syntax:  
%    p = parameters_vehicle3()
%
% Inputs:
%    ---
%
% Outputs:
%    p - parameter vector
%
% Example: 
%
% Other m-files required: none
% Subfunctions: none
% MAT-files required: none
%
% See also: ---

% Author:       Matthias Althoff
% Written:      15-January-2017
% Last update:  05-July-2017
% Last revision:---

%------------- BEGIN CODE --------------

%vehicle body dimensions
p.l = 4.569; %vehicle length [m] 
p.w = 1.844; %vehicle width [m]

%masses
p.m = lb_sec2_ft_IN_kg(101.3367); %vehicle mass [kg]; MASS
p.m_s = lb_sec2_ft_IN_kg(90.21635); %sprung mass [kg]; SMASS
p.m_uf = lb_sec2_ft_IN_kg(5.56015); %unsprung mass front [kg]; UMASSF
p.m_ur = lb_sec2_ft_IN_kg(5.56015); %unsprung mass rear [kg]; UMASSR

%axes distances
p.a = ft_IN_m(3.775563); %distance from spring mass center of gravity to front axle [m]; LENA
p.b = ft_IN_m(4.334437); %distance from spring mass center of gravity to rear axle [m]; LENB

%moments of inertia of sprung mass
p.I_Phi_s = lb_ft_sec2_IN_kg_m2(353.9445); %moment of inertia for sprung mass in roll [kg m^2]; IXS
p.I_y_s = lb_ft_sec2_IN_kg_m2(1625.825); %moment of inertia for sprung mass in pitch [kg m^2]; IYS
p.I_z = lb_ft_sec2_IN_kg_m2(1824.078); %moment of inertia for sprung mass in yaw [kg m^2]; IZZ
p.I_xz_s = lb_ft_sec2_IN_kg_m2(0); %moment of inertia cross product [kg m^2]; IXZ

%suspension parameters
p.K_sf = lbs_ft_IN_N_m(2300); %suspension spring rate (front) [N/m]; KSF
p.K_sdf = lb_sec_ft_IN_N_s_m(164.8335); %suspension damping rate (front) [N s/m]; KSDF
p.K_sr = lbs_ft_IN_N_m(2680); %suspension spring rate (rear) [N/m]; KSR
p.K_sdr = lb_sec_ft_IN_N_s_m(189.7866); %suspension damping rate (rear) [N s/m]; KSDR

%geometric parameters
p.T_f = ft_IN_m(5.165); %track width front [m]; TRWF
p.T_r = ft_IN_m(5.065); %track width rear [m]; TRWB
p.K_ras = lbs_ft_IN_N_m(12000); %lateral spring rate at compliant compliant pin joint between M_s and M_u [N/m]; KRAS

p.K_tsf = ft_lb_rad_IN_N_m_rad(-25038.92); %auxiliary torsion roll stiffness per axle (normally negative) (front) [N m/rad]; KTSF
p.K_tsr = ft_lb_rad_IN_N_m_rad(-5702.369); %auxiliary torsion roll stiffness per axle (normally negative) (rear) [N m/rad]; KTSR
p.K_rad = lb_sec_ft_IN_N_s_m(700); % damping rate at compliant compliant pin joint between M_s and M_u [N s/m]; KRADP
p.K_zt = lbs_ft_IN_N_m(14565.6); % vertical spring rate of tire [N/m]; TSPRINGR

p.h_cg = ft_IN_m(2.453467); %center of gravity height of total mass [m]; HCG (mainly required for conversion to other vehicle models)
p.h_raf = ft_IN_m(0); %height of roll axis above ground (front) [m]; HRAF
p.h_rar = ft_IN_m(0); %height of roll axis above ground (rear) [m]; HRAR

p.h_s = ft_IN_m(2.639405); %M_s center of gravity above ground [m]; HS

p.I_uf = lb_ft_sec2_IN_kg_m2(37.08234); %moment of inertia for unsprung mass about x-axis (front) [kg m^2]; IXUF
p.I_ur = lb_ft_sec2_IN_kg_m2(35.66033); %moment of inertia for unsprung mass about x-axis (rear) [kg m^2]; IXUR
p.I_y_w = 1.7; %wheel inertia, from internet forum for 235/65 R 17 [kg m^2]

p.K_lt = ft_lb_IN_m_N(1.7850283e-04); %lateral compliance rate of tire, wheel, and suspension, per tire [m/N]; KLT
p.R_w = 0.344; %effective wheel/tire radius; chosen as tire rolling radius RR; taken from ADAMS documentation [m]

%split of brake and engine torque
p.T_sb = 0.64;
p.T_se = 0;

%suspension parameters
p.D_f = rad_ft_IN_rad_m(-0.1); %[rad/m]; DF; modified from orig. paper due to stability issues when damping is ignored
p.D_r = rad_ft_IN_rad_m(-0.1); %[rad/m]; DR; modified from orig. paper due to stability issues when damping is ignored
p.E_f = 0; %[needs conversion if nonzero]; EF
p.E_r = 0; %[needs conversion if nonzero]; ER


%tire parameters from ADAMS handbook
%longitudinal coefficients
p.tire.p_cx1 = 1.6411; %Shape factor Cfx for longitudinal force
p.tire.p_dx1 = 1.1739; %Longitudinal friction Mux at Fznom
p.tire.p_dx3 = 0; %Variation of friction Mux with camber
p.tire.p_ex1 = 0.46403; %Longitudinal curvature Efx at Fznom
p.tire.p_kx1 = 22.303; %Longitudinal slip stiffness Kfx/Fz at Fznom
p.tire.p_hx1 = 0.0012297; %Horizontal shift Shx at Fznom
p.tire.p_vx1 = -8.8098e-006; %Vertical shift Svx/Fz at Fznom
p.tire.r_bx1 = 13.276; %Slope factor for combined slip Fx reduction
p.tire.r_bx2 = -13.778; %Variation of slope Fx reduction with kappa
p.tire.r_cx1 = 1.2568; %Shape factor for combined slip Fx reduction
p.tire.r_ex1 = 0.65225; %Curvature factor of combined Fx
p.tire.r_hx1 = 0.0050722; %Shift factor for combined slip Fx reduction

%lateral coefficients
p.tire.p_cy1 = 1.3507; %Shape factor Cfy for lateral forces
p.tire.p_dy1 = 1.0489; %Lateral friction Muy
p.tire.p_dy3 = -2.8821; %Variation of friction Muy with squared camber
p.tire.p_ey1 = -0.0074722; %Lateral curvature Efy at Fznom
p.tire.p_ky1 = -21.92; %Maximum value of stiffness Kfy/Fznom
p.tire.p_hy1 = 0.0026747; %Horizontal shift Shy at Fznom
p.tire.p_hy3 = 0.031415; %Variation of shift Shy with camber
p.tire.p_vy1 = 0.037318; %Vertical shift in Svy/Fz at Fznom
p.tire.p_vy3 = -0.32931; %Variation of shift Svy/Fz with camber
p.tire.r_by1 = 7.1433; %Slope factor for combined Fy reduction
p.tire.r_by2 = 9.1916; %Variation of slope Fy reduction with alpha
p.tire.r_by3 = -0.027856; %Shift term for alpha in slope Fy reduction
p.tire.r_cy1 = 1.0719; %Shape factor for combined Fy reduction
p.tire.r_ey1 = -0.27572; %Curvature factor of combined Fy
p.tire.r_hy1 = 5.7448e-006; %Shift factor for combined Fy reduction
p.tire.r_vy1 = -0.027825; %Kappa induced side force Svyk/Muy*Fz at Fznom
p.tire.r_vy3 = -0.27568; %Variation of Svyk/Muy*Fz with camber
p.tire.r_vy4 = 12.12; %Variation of Svyk/Muy*Fz with alpha
p.tire.r_vy5 = 1.9; %Variation of Svyk/Muy*Fz with kappa
p.tire.r_vy6 = -10.704; %Variation of Svyk/Muy*Fz with atan(kappa)


%------------- END OF CODE --------------