The expiration time for new job artifacts in CI/CD pipelines is now 30 days (GitLab default). Previously generated artifacts in already completed jobs will not be affected by the change. The latest artifacts for all jobs in the latest successful pipelines will be kept. More information:

Commit 4be8e49f authored by Christina Maria Mayr's avatar Christina Maria Mayr
Browse files

Merge branch 'number_instead_mean_time' into 'master'

Use Poisson distribution for spawn generation and measure the real parameter value with data processor

See merge request !131
parents dd7564e3 e5148ef7
Pipeline #262012 passed with stages
in 155 minutes and 33 seconds
package org.vadere.simulator.projects.dataprocessing.processor;
import org.apache.commons.collections.CollectionUtils;
import org.vadere.annotation.factories.dataprocessors.DataProcessorClass;
import org.vadere.simulator.control.simulation.SimulationState;
import org.vadere.simulator.projects.dataprocessing.datakey.TimestepKey;
import org.vadere.state.attributes.processor.AttributesNumberOfGeneratedPedsProcessor;
import org.vadere.state.scenario.Agent;
import org.vadere.state.scenario.Pedestrian;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
@DataProcessorClass(label = "NumberOfGeneratedPedsProcessor")
public class NumberOfGeneratedPedsProcessor extends DataProcessor<TimestepKey, Double> {
private List<Integer> pedIds = new ArrayList<Integer>();
public NumberOfGeneratedPedsProcessor(){
protected void doUpdate(SimulationState state) {
double t = state.getSimTimeInSec();
if ( t + 1e-7 >= getAttributes().getStartTime() && t - 1e-7 <= getAttributes().getEndTime() ) {
int numAgentsGen;
List<Integer> newPedIds = state.getTopography().getElements(Pedestrian.class).stream().map(Agent::getId).collect(Collectors.toList());
if (this.getPedsIds() == null){
numAgentsGen = newPedIds.size();
else {
List<Integer> oldPedIds = this.getPedsIds();
List<Integer> list = new ArrayList<Integer>(CollectionUtils.disjunction(newPedIds, oldPedIds));
numAgentsGen = list.size();
double poissonParameter = numAgentsGen/state.getScenarioStore().getAttributesSimulation().getSimTimeStepLength();
putValue(new TimestepKey(state.getStep()), poissonParameter);
public AttributesNumberOfGeneratedPedsProcessor getAttributes() {
if(super.getAttributes() == null) {
setAttributes(new AttributesNumberOfGeneratedPedsProcessor());
return (AttributesNumberOfGeneratedPedsProcessor)super.getAttributes();
private List<Integer> getPedsIds(){
return this.pedIds;
private void setPedsIds(List<Integer> pedsId){
this.pedIds = pedsId;
package org.vadere.state.attributes.processor;
public class AttributesNumberOfGeneratedPedsProcessor extends AttributesProcessor {
private double startTime = 0.0;
private double endTime = -1; // -1 until simulation finished
public double getStartTime() {
return startTime;
public double getEndTime() {
if (endTime >= startTime - 1e-7)
return endTime;
return Double.MAX_VALUE;
package org.vadere.state.scenario;
import org.apache.commons.math3.distribution.ExponentialDistribution;
import org.apache.commons.math3.random.RandomGenerator;
* -> Scope: Definition of spawn generation in source
* Use the PoissonDistribution to generate agents with a Poisson process.
* The Poisson process is a random process.
* Hence, the generation time of a specific agent is independent from other generation times.
* The Poisson distribution and the exponential distribution are related.
* The reciprocal value of the Poisson parameter is the mean inter arrival time used in the exponential distribution.
* @author Christina Mayr
* @since 2020-05-27
public class PoissonDistribution extends ExponentialDistribution {
* @param numberPedsPerSecond Unit: agents/second. Reciprocal value of mean inter-arrival time [seconds].
public PoissonDistribution(RandomGenerator rng, double numberPedsPerSecond) {
super(rng, 1/numberPedsPerSecond);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment