Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
V
vadere
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
111
Issues
111
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
4
Merge Requests
4
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
vadere
vadere
Commits
ec049e49
Commit
ec049e49
authored
May 22, 2019
by
Benedikt Zoennchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update metric notebook, add data for the notebook such that one can experiment with it.
parent
819e9600
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
68452 additions
and
190 deletions
+68452
-190
Tools/Notebooks/TrajectoryMetric.ipynb
Tools/Notebooks/TrajectoryMetric.ipynb
+154
-190
Tools/Notebooks/data/TrajectoryMetric/KO/ko-240-120-240/ko-240-120-240_combined_MB.txt
...ryMetric/KO/ko-240-120-240/ko-240-120-240_combined_MB.txt
+67992
-0
Tools/Notebooks/data/TrajectoryMetric/trajectories_simulation.txt
...tebooks/data/TrajectoryMetric/trajectories_simulation.txt
+306
-0
No files found.
Tools/Notebooks/TrajectoryMetric.ipynb
View file @
ec049e49
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
...
...
@@ -29,7 +22,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#
Methods to c
onvert Vadere trajectories into a DataFrame"
"#
C
onvert Vadere trajectories into a DataFrame"
]
},
{
...
...
@@ -50,9 +43,16 @@
" for pedId in trajectories:\n",
" trajectory_append(pedId, trajectories[pedId], llist)\n",
" dataframe = pd.DataFrame(llist, columns=['pedestrianId','startX','startY','startTime','endX','endY','endTime'])\n",
" return dataframe\n",
"\n",
"file = \"./data/trajectories_distance.txt\"\n",
" return dataframe"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"file = \"./data/TrajectoryMetric/trajectories_simulation.txt\"\n",
"f = open(file, \"r\")\n",
"header = f.readline();\n",
"trajectories = dict({});\n",
...
...
@@ -67,6 +67,113 @@
"ptrajectories.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Convert experiment data into a DataFrame"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def load_experiment(file):\n",
" fps = 16\n",
" pad = pd.DataFrame([[np.nan, np.nan, np.nan, np.nan, np.nan]], columns=['pedestrianId', 'timeStep', 'x', 'y', 'e'])\n",
" data = pd.read_csv(\n",
" file, \n",
" sep=' ', \n",
" names=['pedestrianId', 'timeStep', 'x', 'y', 'e'], \n",
" index_col=False, \n",
" header=None, \n",
" skiprows=0)\n",
" \n",
" cc = pd.concat([pad, data], ignore_index=True)\n",
" \n",
" data['endX'] = data['x'] / 100 + 18.7\n",
" data['endY'] = data['y'] / 100 + 4.2\n",
" data['startX'] = cc['x'] / 100 + 18.7\n",
" data['startY'] = cc['y'] / 100 + 4.2\n",
" data['startTime'] = data['timeStep'] / fps - 1/fps\n",
" data['endTime'] = data['timeStep'] / fps\n",
" data = data.drop(columns=['timeStep','x','y','e'])\n",
" return data\n",
" \n",
"def to_trajectories(data):\n",
" trajectories = dict({})\n",
" trajectory = []\n",
" for i in range(len(data)-1):\n",
" pedId = data['pedestrianId'][i]\n",
" if pedId == data['pedestrianId'][i+1]:\n",
" pedId = data['pedestrianId'][i]\n",
" x1 = data['x'][i]\n",
" y1 = data['y'][i]\n",
" x2 = data['x'][i+1]\n",
" y2 = data['y'][i+1]\n",
" startTime = data['timeStep'][i] \n",
" endTime = data['timeStep'][i+1]\n",
" fs = {'startTime':startTime, 'endTime': endTime, 'start':{'x':x1, 'y':y1}, 'end':{'x':x2, 'y':y2}}\n",
" trajectory.append(fs)\n",
" else:\n",
" trajectories[pedId] = trajectory\n",
" trajectory = []\n",
" pedId = data['pedestrianId'][i]\n",
" return trajectories"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#times = np.linspace(4,10,10)\n",
"#euclid_d(get_trajectory(1), get_trajectory(1), times)\n",
"#to_trajectories(load_experiment(real_file))[1]\n",
"\n",
"real_file = \"./data/TrajectoryMetric/KO/ko-240-120-240/ko-240-120-240_combined_MB.txt\"\n",
"trajectoriesReal = load_experiment(real_file)\n",
"#trajectoriesReal = to_trajectories(data)\n",
"trajectoriesReal.query('pedestrianId == 1').head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Convert DataFrame to postvis DataFrame"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def to_postVis(df):\n",
" simTimeStep = 0.4\n",
" fps = 16\n",
" df['timeStep'] = np.ceil(df['endTime'] / (1/fps)).astype(np.int)\n",
" df['x'] = df['endX']\n",
" df['y'] = df['endY']\n",
" df['simTime'] = df['endTime']\n",
" df = df.drop(columns=['startX','startY','endX','endY','startTime', 'endTime']) \n",
" return df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"to_postVis(trajectoriesReal).to_csv('expteriment_2.trajectories',index=False,sep=' ')\n",
"to_postVis(trajectoriesReal).head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
...
...
@@ -284,8 +391,15 @@
" \n",
"def total_inter_agent(trajectories1, trajectories2, times):\n",
" \"\"\"too expensive! TODO!\"\"\"\n",
" return sum(map(lambda t: inter_agent_d(trajectories_position(trajectories1, [t])) - inter_agent_d(trajectories_position(trajectories2, [t])), times)) / len(times)\n",
" \n",
" return sum(map(lambda t: inter_agent_d(trajectories_position(trajectories1, [t])) - inter_agent_d(trajectories_position(trajectories2, [t])), times)) / len(times)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#start_time(get_trajectory(1, ptrajectories))\n",
"#max_start_time(ptrajectories)\n",
"#end_time(get_trajectory(1, ptrajectories))\n",
...
...
@@ -305,22 +419,6 @@
"#print(total_inter_agent(ptrajectories, ptrajectories, [1,2]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"trajPos2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
...
...
@@ -329,75 +427,6 @@
},
"outputs": [],
"source": [
"def position(trajectory, time):\n",
" fs = footstep(trajectory, time);\n",
" if fs != None:\n",
" startTime = fs['startTime'];\n",
" endTime = fs['endTime'];\n",
" dur = duration(fs);\n",
" partial_dur = time - startTime;\n",
" ratio = partial_dur / dur;\n",
" start = fs['start'];\n",
" x1 = start['x'];\n",
" y1 = start['y'];\n",
" l = length(fs);\n",
" if l == 0.0:\n",
" return np.array([x1, y1])\n",
" else: \n",
" partial_l = l * ratio;\n",
" v = direction(fs) / l * partial_l;\n",
" return np.array([x1, y1]) + v;\n",
"\n",
"\n",
"def euclid_d(traj1, traj2, times):\n",
" \"\"\"Computes the total (Euclidean) distance between two trajectories at certain times.\"\"\"\n",
" return 0\n",
" sT = max([start_time(traj1), start_time(traj2)])\n",
" eT = min([end_time(traj1), end_time(traj2)])\n",
" filtered_times = list(filter(lambda t: t >= sT and t <= eT, times))\n",
" overlaps = len(filtered_times)\n",
" if overlaps == 0:\n",
" return 0\n",
" return sum(map(lambda t: np.linalg.norm(position(traj1, t)- position(traj2, t)), filtered_times)) / overlaps\n",
" \n",
"def euclid_path_length(traj1, traj2, times):\n",
" sT = max([start_time(traj1), start_time(traj2)]);\n",
" eT = min([end_time(traj1), end_time(traj2)]);\n",
" filtered_times = list(filter(lambda t: t >= sT and t <= eT, times));\n",
" s = np.array([0, 0])\n",
" for i in range(len(filtered_times)-1):\n",
" t1 = filtered_times[i]\n",
" t2 = filtered_times[i+1]\n",
" d1 = position(traj1, t1) - position(traj1, t2)\n",
" d2 = position(traj2, t1) - position(traj2, t2)\n",
" diff = d1 - d2\n",
" s = s + diff\n",
" return s;\n",
"\n",
"def inter_agent_d(trajectories, t):\n",
" s = 0\n",
" min_index = min(trajectories.keys())\n",
" c = 0\n",
" for i in range(len(trajectories)):\n",
" pos1 = position(trajectories[i+min_index], t)\n",
" for j in range(i+1, len(trajectories)):\n",
" pos2 = position(trajectories[j+min_index], t)\n",
" if pos1 is not None and pos2 is not None:\n",
" s = s + np.linalg.norm(pos1 - pos2)\n",
" c = c + 1\n",
" if c == 0:\n",
" return 0\n",
" else:\n",
" return s / c\n",
" \n",
"def total_inter_agent(trajectories1, trajectories2, times):\n",
" return sum(map(lambda t: inter_agent_d(trajectories1, t) - inter_agent_d(trajectories2, t), times)) / len(times)\n",
" \n",
"def euclid_len(trajectory, sTime, eTime):\n",
" \"\"\"Computes the total (Euclidean) length of the trajectory in between [sTime;eTime].\"\"\"\n",
" cut_traj = cut_soft(trajectory, sTime, eTime);\n",
" return trajectory_length(cut_traj)\n",
"\n",
"def greedy_match(trajectories1, trajectories2, times, f):\n",
" \"\"\"Computes a match of trajectories by using a greedy algorithm.\"\"\"\n",
" assert len(trajectories1) == len(trajectories2)\n",
...
...
@@ -418,82 +447,14 @@
" minVal = val\n",
" match[i] = minIndex\n",
" indexSet.remove(minIndex)\n",
" return match\n",
" \n",
"def overlap(traj1, traj2, dt):\n",
" return True\n",
" \n",
"def load_experiment(file):\n",
" fps = 16\n",
" pad = pd.DataFrame([[np.nan, np.nan, np.nan, np.nan, np.nan]], columns=['pedestrianId', 'timeStep', 'x', 'y', 'e'])\n",
" data = pd.read_csv(\n",
" file, \n",
" sep=' ', \n",
" names=['pedestrianId', 'timeStep', 'x', 'y', 'e'], \n",
" index_col=False, \n",
" header=None, \n",
" skiprows=0)\n",
" \n",
" cc = pd.concat([pad, data], ignore_index=True)\n",
" \n",
" data['endX'] = data['x'] / 100 + 18.7\n",
" data['endY'] = data['y'] / 100 + 4.2\n",
" data['startX'] = cc['x'] / 100 + 18.7\n",
" data['startY'] = cc['y'] / 100 + 4.2\n",
" data['startTime'] = data['timeStep'] / fps - 1/fps\n",
" data['endTime'] = data['timeStep'] / fps\n",
" data = data.drop(columns=['timeStep','x','y','e'])\n",
" return data\n",
" \n",
"def to_trajectories(data):\n",
" trajectories = dict({})\n",
" trajectory = []\n",
" for i in range(len(data)-1):\n",
" pedId = data['pedestrianId'][i]\n",
" if pedId == data['pedestrianId'][i+1]:\n",
" pedId = data['pedestrianId'][i]\n",
" x1 = data['x'][i]\n",
" y1 = data['y'][i]\n",
" x2 = data['x'][i+1]\n",
" y2 = data['y'][i+1]\n",
" startTime = data['timeStep'][i] \n",
" endTime = data['timeStep'][i+1]\n",
" fs = {'startTime':startTime, 'endTime': endTime, 'start':{'x':x1, 'y':y1}, 'end':{'x':x2, 'y':y2}}\n",
" trajectory.append(fs)\n",
" else:\n",
" trajectories[pedId] = trajectory\n",
" trajectory = []\n",
" pedId = data['pedestrianId'][i]\n",
" return trajectories\n",
"\n",
"def to_postVis(df):\n",
" simTimeStep = 0.4\n",
" fps = 16\n",
" df['timeStep'] = np.ceil(df['endTime'] / (1/fps)).astype(np.int)\n",
" df['x'] = df['endX']\n",
" df['y'] = df['endY']\n",
" df['simTime'] = df['endTime']\n",
" df = df.drop(columns=['startX','startY','endX','endY','startTime', 'endTime']) \n",
" return df\n",
"#times = np.linspace(4,10,10)\n",
"#euclid_d(get_trajectory(1), get_trajectory(1), times)\n",
"#to_trajectories(load_experiment(real_file))[1]\n",
"\n",
"file = \"./data/trajectories_distance.txt\"\n",
"real_file = \"./data/KO/ko-240-120-240/ko-240-120-240_combined_MB.txt\""
" return match"
]
},
{
"cell_type": "code",
"execution_count": null,
"cell_type": "markdown",
"metadata": {},
"outputs": [],
"source": [
"data = load_experiment(real_file)\n",
"#trajectoriesReal = to_trajectories(data)\n",
"data.query('pedestrianId == 1').head()\n",
"to_postVis(data).to_csv('expteriment_2.trajectories',index=False,sep=' ')\n",
"to_postVis(data).head(10)"
"# Plot trajectories"
]
},
{
...
...
@@ -502,44 +463,47 @@
"metadata": {},
"outputs": [],
"source": [
"import seaborn as sns\n",
"sns.set(style=\"ticks\")\n",
"\n",
"current_palette = sns.color_palette()\n",
"\n",
"def to_line(trajectory, xleft):\n",
" x = []\n",
" y = []\n",
" for fs in trajectory:\n",
" x.append(fs['start']['x'])\n",
" y.append(fs['start']['y'])\n",
" \"\"\"Transforms a trajectory into a Line2D.\"\"\"\n",
" x = trajectory['endX'].values\n",
" y = trajectory['endY'].values\n",
" if x[0] < xleft:\n",
" c = current_palette[2]\n",
" else:\n",
" c = current_palette[0]\n",
" return x, y, Line2D(x, y, color=c, linewidth=0.2)\n",
"\n",
"fig1 = plt.figure(figsize=(10,10))\n",
"ax1 = fig1.add_subplot(111)\n",
"def add_lines(trajectories, xleft, ax):\n",
" grouped = trajectories.groupby(['pedestrianId'])\n",
" for name, group in grouped:\n",
" x, y, line = to_line(group, xleft)\n",
" ax.add_line(line)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import seaborn as sns\n",
"sns.set(style=\"ticks\")\n",
"\n",
"current_palette = sns.color_palette()\n",
"\n",
"x_vcenter = 17.5\n",
"y_vcenter = 5.2\n",
"
for i in range(len(trajectoriesReal)):
\n",
"
x, y, line = to_line(trajectoriesReal[i+1], 14
)\n",
"
ax1.add_line(line
)\n",
"
\n",
"\n",
"
fig1 = plt.figure(figsize=(10,10)
)\n",
"
ax1 = fig1.add_subplot(111
)\n",
"
add_lines(trajectoriesReal, 14, ax1)
\n",
"ax1.set_xlim(x_vcenter-5, x_vcenter+5)\n",
"ax1.set_ylim(y_vcenter-4, y_vcenter+4)\n",
"ax1.set_aspect(1)\n",
"\n",
"fig2 = plt.figure(figsize=(10,10))\n",
"ax2 = fig2.add_subplot(111)\n",
"\n",
"for i in range(len(trajectories)):\n",
" x, y, line = to_line(trajectories[i+1], 14)\n",
" ax2.add_line(line)\n",
"\n",
"add_lines(ptrajectories, 14, ax2)\n",
"ax2.set_xlim(x_vcenter-5, x_vcenter+5)\n",
"ax2.set_ylim(y_vcenter-4, y_vcenter+4)\n",
"ax2.set_aspect(1)\n",
...
...
Tools/Notebooks/data/TrajectoryMetric/KO/ko-240-120-240/ko-240-120-240_combined_MB.txt
0 → 100755
View file @
ec049e49
This diff is collapsed.
Click to expand it.
Tools/Notebooks/data/TrajectoryMetric/trajectories_simulation.txt
0 → 100644
View file @
ec049e49
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment